186 research outputs found

    Perioperative care of the older patient

    Get PDF
    Nearly 60% of the Dutch population undergoing surgery is aged 65 years and over. Older patients are at increased risk of developing perioperative complications (e.g., myocardial infarction, pneumonia, or delirium), which may lead to a prolonged hospital stay or death. Preoperative risk stratification calculates a patient's risk by evaluating the presence and extent of frailty, pathophysiological risk factors, type of surgery, and the results of (additional) testing. Type of anesthesia, fluid management, and pain management affect outcome of surgery. Recent developments focus on multimodal perioperative care of the older patient, using minimally invasive surgery, postoperative anesthesiology rounds, and early geriatric consultation

    Species Review of Amphibian Extinction Risks in Madagascar: Conclusions from the Global Amphibian Assessment

    Full text link
    We assessed the extinction risks of Malagasy amphibians by evaluating their distribution, occurrence in protected areas, population trends, habitat quality, and prevalence in commercial trade. We estimated and mapped the distribution of each of the 220 described Malagasy species and applied, for the first time, the IUCN Red List categories and criteria to all species described at the time of the assessment. Nine species were categorized as critically endangered, 21 as endangered, and 25 as vulnerable. The most threatened species occur on the High Plateau and/or have been subjected to overcollection for the pet trade, but restricted extent of occurrence and ongoing habitat destruction were identified as the most important factors influencing extinction threats. The two areas with the majority of threatened species were the northern Tsaratanana-Marojejy-Masoala highlands and the southeastern Anosy Mountains. The current system of protected areas includes 82% of the threatened amphibian species. Of the critically endangered species, 6 did not occur in any protected area. For conservation of these species we recommend the creation of a reserve for the species of the Mantella aurantiaca group, the inclusion of two Scaphiophryne species in the Convention on the International Trade in Endangered Species Appendix II, and the suspension of commercial collecting for Mantella cowani . Field surveys during the last 15 years reveal no pervasive extinction of Malagasy amphibians resulting from disease or other agents, as has been reported in some other areas of the world.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75394/1/j.1523-1739.2005.00249.x.pd

    NMR quality control of fragment libraries for screening

    Get PDF
    Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT (Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of 782 fragments were assembled utilizing the concept of "poised fragments" with the aim to facilitate downstream synthesis of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening, comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression through the quality control process

    Cytotaxonomy of the Seychelles tree frog, Megalixalus seychellensis (Duméril and Bibron) (Amphibia: Hyperoliidae)

    Full text link
    The Seychelles tree frog, Megalixalus seychellensis has 2n=24 chromosomes of gradually decreasing length. Pairs 2, 3, and 4 are submetacentric, and the remaining pairs are metacentric. The karyotype affirms hyperoliid assignment of this species, and indicates a link between the Seychellean fauna and the African-Madagascan faunas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42716/1/18_2005_Article_BF01975110.pd

    Weak Spatial and Temporal Population Genetic Structure in the Rosy Apple Aphid, Dysaphis plantaginea, in French Apple Orchards

    Get PDF
    We used eight microsatellite loci and a set of 20 aphid samples to investigate the spatial and temporal genetic structure of rosy apple aphid populations from 13 apple orchards situated in four different regions in France. Genetic variability was very similar between orchard populations and between winged populations collected before sexual reproduction in the fall and populations collected from colonies in the spring. A very small proportion of individuals (∼2%) had identical multilocus genotypes. Genetic differentiation between orchards was low (FST<0.026), with significant differentiation observed only between orchards from different regions, but no isolation by distance was detected. These results are consistent with high levels of genetic mixing in holocyclic Dysaphis plantaginae populations (host alternation through migration and sexual reproduction). These findings concerning the adaptation of the rosy apple aphid have potential consequences for pest management

    Atypical Development of Attentional Control Associates with Later Adaptive Functioning, Autism and ADHD Traits

    Get PDF
    Funder: H2020 European Research Council; doi: http://dx.doi.org/10.13039/100010663Funder: Research Foundation FlandersFunder: Universiteit Gent; doi: http://dx.doi.org/10.13039/501100004385Funder: Marguerite-Marie DelacroixFunder: Autistica; doi: http://dx.doi.org/10.13039/100011706Funder: Riksbankens Jubileumsfond; doi: http://dx.doi.org/10.13039/501100004472; Grant(s): NHS14-1802:1Funder: K.F. Hein FondsFunder: Scott Family Junior Research FellowshipAbstract: Autism is frequently associated with difficulties with top-down attentional control, which impact on individuals’ mental health and quality of life. The developmental processes involved in these attentional difficulties are not well understood. Using a data-driven approach, 2 samples (N = 294 and 412) of infants at elevated and typical likelihood of autism were grouped according to profiles of parent report of attention at 10, 15 and 25 months. In contrast to the normative profile of increases in attentional control scores between infancy and toddlerhood, a minority (7–9%) showed plateauing attentional control scores between 10 and 25 months. Consistent with pre-registered hypotheses, plateaued growth of attentional control was associated with elevated autism and ADHD traits, and lower adaptive functioning at age 3 years

    Insect pathogens as biological control agents: back to the future

    Get PDF
    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control
    corecore