14 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy

    No full text
    Pacing is an important part of electrophysiology and of cardiology in general. Whereas some of the situations requiring pacing are clear and have not changed over the years, many others have evolved and have been the subject of extensive recent research, such as pacing after syncope (section 5), pacing following transcatheter aortic valve implantation (TAVI; section 8), cardiac resynchronization therapy (CRT) for heart failure (HF) and for prevention of pacing-induced cardiomyopathy (section 6), and pacing in various infiltrative and inflammatory diseases of the heart, as well as in different cardiomyopathies (section 8). Other novel topics include new diagnostic tools for decision-making on pacing (section 4), as well as a whole new area of pacing the His bundle and the left bundle branch (section 7). In addition, attention has increased in other areas, such as how to systematically minimize procedural risk and avoid complications of cardiac pacing (section 9), how to manage patients with pacemakers in special situations, such as when magnetic resonance imaging (MRI) or irradiation are needed (section 11), how to follow patients with a pacemaker with emphasis on the use of remote monitoring, and how to include shared decision-making in caring for this patient population (section 12). The last pacing guidelines of the European Society of Cardiology (ESC) were published in 2013; therefore, a new set of guidelines was felt to be timely and necessary

    Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop

    Get PDF
    Multiple sclerosis (MS) is an inflammatory and neurodegenerative demyelinating disease of the central nervous system (CNS), most likely autoimmune in origin, usually beginning in early adulthood. The aetiology of the disease is not well understood; it is viewed currently as a multifactorial disease which results from complex interactions between genetic predisposition and environmental factors, of which a few are potentially modifiable. Improving our understanding of these factors can lead to new and more effective approaches to patient counselling and, possibly, prevention and management of the disease. The 2016 focused workshop of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) addressed the topic of environmental, modifiable risk factors for MS, gathering experts from around the world, to collate experimental and clinical research into environmental factors that have been associated with the disease onset and, in a few cases, disease activity and progression. A number of factors, including infections, vitamin D deficiency, diet and lifestyle factors, stress and comorbidities, were discussed. The meeting provided a forum to analyse available evidence, to identify inconsistencies and gaps in current knowledge and to suggest avenues for future research

    The Natural Immune System in Autoimmune and Neurological Disease

    No full text
    corecore