211 research outputs found

    Endothelial Cell-Specific Molecule 2 (Ecsm2) Localizes To Cell-Cell Junctions And Modulates Bfgf-Directed Cell Migration Via The Erk-Fak Pathway

    Get PDF
    Background: Despite its first discovery by in silico cloning of novel endothelial cell-specific genes a decade ago, the biological functions of endothelial cell-specific molecule 2 (ECSM2) have only recently begun to be understood. Limited data suggest its involvement in cell migration and apoptosis. However, the underlying signaling mechanisms and novel functions of ECSM2 remain to be explored. Methodology/Principal Findings: A rabbit anti-ECSM2 monoclonal antibody (RabMAb) was generated and used to characterize the endogenous ECSM2 protein. Immunoblotting, immunoprecipitation, deglycosylation, immunostaining and confocal microscopy validated that endogenous ECSM2 is a plasma membrane glycoprotein preferentially expressed in vascular endothelial cells (ECs). Expression patterns of heterologously expressed and endogenous ECSM2 identified that ECSM2 was particularly concentrated at cell-cell contacts. Cell aggregation and transwell assays showed that ECSM2 promoted cell-cell adhesion and attenuated basic fibroblast growth factor (bFGF)-driven EC migration. Gain or loss of function assays by overexpression or knockdown of ECSM2 in ECs demonstrated that ECSM2 modulated bFGF-directed EC motility via the FGF receptor (FGFR)-extracellular regulated kinase (ERK)-focal adhesion kinase (FAK) pathway. The counterbalance between FAK tyrosine phosphorylation (activation) and ERK-dependent serine phosphorylation of FAK was critically involved. A model of how ECSM2 signals to impact bFGF/FGFR-driven EC migration was proposed. Conclusions/Significance: ECSM2 is likely a novel EC junctional protein. It can promote cell-cell adhesion and inhibit bFGF-mediated cell migration. Mechanistically, ECSM2 attenuates EC motility through the FGFR-ERK-FAK pathway. The findings suggest that ECSM2 could be a key player in coordinating receptor tyrosine kinase (RTK)-, integrin-, and EC junctional component-mediated signaling and may have important implications in disorders related to endothelial dysfunction and impaired EC junction signaling. © 2011 Shi et al

    Energy applications of ionic liquids

    Get PDF
    Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cation–anion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermoelectrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 °C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO2 absorbents for post-combustion CO2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities

    Capacitive energy storage from -50 to 100 °C using an ionic liquid electrolyte

    Get PDF
    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from -50 to 100 °C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s

    Letrozole in the neoadjuvant setting: the P024 trial

    Get PDF
    Neoadjuvant chemotherapy trials have consistently reported lower response rates in hormone receptor-positive (HR+) breast cancer when compared with HR− cases. Preoperative endocrine therapy has therefore become a logical alternative and has gained considerable momentum from the finding that aromatase inhibitors (AIs) are more effective than tamoxifen for HR+ breast cancer in both the neoadjuvant and adjuvant settings. The most convincing neoadjuvant trial to demonstrate the superiority of an AI versus tamoxifen was the P024 study, a large multinational double-blind trial in postmenopausal women with HR+ breast cancer ineligible for breast-conserving surgery. The overall response rate (ORR) was 55% for letrozole and 36% for tamoxifen (P < 0.001). Significantly more letrozole-treated patients underwent breast-conserving surgery (45 vs. 35%, respectively; P = 0.022). In addition, ORR was significantly higher with letrozole than tamoxifen in the human epidermal growth factor receptor HER1/HER2+ subgroup (P = 0.0004). The clinical efficacy of letrozole in HER2+ breast cancer was confirmed by fluorescent in situ hybridization analysis and was found to be comparable to that of HER2− cases (ORR 71% in both subsets). Biomarker studies confirmed the superiority of letrozole in centrally assessed estrogen receptor-positive (ER+) tumors and found a strong relationship with the degree of ER positivity for both agents. Interestingly, letrozole was effective even in marginally ER+ tumors and, unlike tamoxifen, consistently reduced the expression from estrogen-regulated genes (progesterone receptor and trefoil factor 1). Furthermore, when analyzed by Ki67 immunohistochemistry, letrozole was significantly more effective than tamoxifen in reducing tumor proliferation (P = 0.0009). Thus, neoadjuvant letrozole is safe and superior to tamoxifen in the treatment of postmenopausal women with HR+ locally advanced breast cancer

    Supercapacitors (electrochemical capacitors)

    Get PDF
    International audienceRapid development of the technologies based on electric energy in the last decades have stimulated intensive research on efficient power sources. Electrochemical energy conversion and storage systems are based on Faradaic reactions (charge transfer) and electrostatic attraction of ions at the electrode/electrolyte interface. The latter might be an interesting solution for applications requiring moderate energy density, high power rates, and long cycle life. Electrochemical capacitors (ECs) store the charge in a physical manner, hence, their energy density is moderate. At the same time, the lack of electrochemical reactions ensures very high power and long cycle life compared to batteries. Activated carbons with their versatile properties (like specific surface area, well-developed and suitable porosity, heteroatoms in the graphene matrix) are the most popular materials in EC application. This chapter provides a comprehensive overview of the carbon-based materials recently developed, with special attention devoted to those obtained by biomass carbonization and activation. Electrochemical properties demonstrated by such carbons are discussed in respect to their physicochemical characteristic

    Contributions and complexities from the use of in-vivo animal models to improve understanding of human neuroimaging signals.

    Get PDF
    Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in-vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anaesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologues within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules
    corecore