315 research outputs found

    A comprehensive framework for analysis of microRNA sequencing data in metastatic colorectal cancer

    Get PDF
    Although microRNAs (miRNAs) contribute to all hallmarks of cancer, miRNA dysregulation in metastasis remains poorly understood. The aim of this work was to reliably identify miRNAs associated with metastatic progression of colorectal cancer (CRC) using novel and previously published nextgeneration sequencing (NGS) datasets generated from 268 samples of primary (pCRC) and metastatic CRC (mCRC; liver, lung and peritoneal metastases) and tumor adjacent tissues. Differential expression analysis was performed using a meticulous bioinformatics pipeline, including only bona fide miRNAs, and utilizing miRNA-tailored quality control and processing. Five miRNAs were identified as upregulated at multiple metastatic sites Mir-210 3p, Mir191 5p, Mir-8-P1b 3p [mir-141–3p], Mir-1307 5p and Mir-155 5p. Several have previously been implicated in metastasis through involvement in epithelial-tomesenchymal transition and hypoxia, while other identified miRNAs represent novel findings. The use of a publicly available pipeline facilitates reproducibility and allows new datasets to be added as they become available. The set of miRNAs identified here provides a reliable starting-point for further research into the role of miRNAs in metastatic progression

    Spin-phonon coupled modes in the incommensurate phases of doped CuGeO3_{3}

    Full text link
    The doping effect of the folded phonon mode at 98 cm1^{-1} was investigated on the Si-doped CuGeO3_3 by magneto-optical measurements in far-infrared (FIR) region under high magnetic field. The folded phonon mode at 98 cm1^{-1} appears not only in the dimerized (D) phase but also in the dimerized-anitiferromagnetic (DAF) phase on the doped CuGeO3_3. The splitting was observed in the incommensurate (IC) phase and the antiferromagnetically ordered incommensurate (IAF) phase above HCH_C. The split-off branches exhibit different field dependence from that of the pure CuGeO3_3 in the vicinity of HCH_C, and the discrepancy in the IAF phase is larger than that in the IC phase. It is caused by the interaction between the solitons and the impurities.Comment: 7 pages, 4 figures, resubmitted to Phys. Rev.

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∼10 μm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data

    A randomized open label phase-II clinical trial with or without infusion of plasma from subjects after convalescence of SARS-CoV-2 infection in high-risk patients with confirmed severe SARS-CoV-2 disease (RECOVER): a structured summary of a study protocol for a randomised controlled trial

    Get PDF
    OBJECTIVES: Primary objectives • To assess the time from randomisation until an improvement within 84 days defined as two points on a seven point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of SARS-CoV-2 infection or standard of care. Secondary objectives • To assess overall survival, and the overall survival rate at 28 56 and 84 days. • To assess SARS-CoV-2 viral clearance and load as well as antibody titres. • To assess the percentage of patients that required mechanical ventilation. • To assess time from randomisation until discharge. TRIAL DESIGN: Randomised, open-label, multicenter phase II trial, designed to assess the clinical outcome of SARS-CoV-2 disease in high-risk patients (group 1 to group 4) following treatment with anti-SARS-CoV-2 convalescent plasma or standard of care. PARTICIPANTS: High-risk patients >18 years of age hospitalized with SARS-CoV-2 infection in 10-15 university medical centres will be included. High-risk is defined as SARS-CoV-2 positive infection with Oxygen saturation at ≤ 94% at ambient air with additional risk features as categorised in 4 groups: • Group 1, pre-existing or concurrent hematological malignancy and/or active cancer therapy (incl. chemotherapy, radiotherapy, surgery) within the last 24 months or less. • Group 2, chronic immunosuppression not meeting the criteria of group 1. • Group 3, age ≥ 50 - 75 years meeting neither the criteria of group 1 nor group 2 and at least one of these criteria: Lymphopenia 1μg/mL. • Group 4, age ≥ 75 years meeting neither the criteria of group 1 nor group 2. Observation time for all patients is expected to be at least 3 months after entry into the study. Patients receive convalescent plasma for two days (day 1 and day 2) or standard of care. For patients in the standard arm, cross over is allowed from day 10 in case of not improving or worsening clinical condition. Nose/throat swabs for determination of viral load are collected at day 0 and day 1 (before first CP administration) and subsequently at day 2, 3, 5, 7, 10, 14, 28 or until discharge. Serum for SARS-Cov-2 diagnostic is collected at baseline and subsequently at day 3, 7, 14 and once during the follow-up period (between day 35 and day 84). There is a regular follow-up of 3 months. All discharged patients are followed by regular phone calls. All visits, time points and study assessments are summarized in the Trial Schedule (see full protocol Table 1). All participating trial sites will be supplied with study specific visit worksheets that list all assessments and procedures to be completed at each visit. All findings including clinical and laboratory data are documented by the investigator or an authorized member of the study team in the patient's medical record and in the electronic case report forms (eCRFs). INTERVENTION AND COMPARATOR: This trial will analyze the effects of convalescent plasma from recovered subjects with SARS-CoV-2 antibodies in high-risk patients with SARS-CoV-2 infection. Patients at high risk for a poor outcome due to underlying disease, age or condition as listed above are eligible for enrollment. In addition, eligible patients have a confirmed SARS-CoV-2 infection and O2 saturation ≤ 94% while breathing ambient air. Patients are randomised to receive (experimental arm) or not receive (standard arm) convalescent plasma in two bags (238 - 337 ml plasma each) from different donors (day 1, day 2). A cross over from the standard arm into the experimental arm is possible after day 10 in case of not improving or worsening clinical condition. MAIN OUTCOMES: Primary endpoints: The main purpose of the study is to assess the time from randomisation until an improvement within 84 days defined as two points on a seven-point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of a SARS-CoV-2 infection or standard of care. Secondary endpoints: • Overall survival, defined as the time from randomisation until death from any cause 28-day, 56-day and 84-day overall survival rates. • SARS-CoV-2 viral clearance and load as well as antibody titres. • Requirement mechanical ventilation at any time during hospital stay (yes/no). • Time until discharge from randomisation. • Viral load, changes in antibody titers and cytokine profiles are analysed in an exploratory manner using paired non-parametric tests (before - after treatment). RANDOMISATION: Upon confirmation of eligibility (patients must meet all inclusion criteria and must not meet exclusion criteria described in section 5.3 and 5.4 of the full protocol), the clinical site must contact a centralized internet randomization system ( https://randomizer.at/ ). Patients are randomized using block randomisation to one of the two arms, experimental arm or standard arm, in a 1:1 ratio considering a stratification according to the 4 risk groups (see Participants). BLINDING (MASKING): The study is open-label, no blinding will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total number of 174 patients is required for the entire trial, n=87 per group. TRIAL STATUS: Protocol version 1.2 dated 09/07/2020. A recruitment period of approximately 9 months and an overall study duration of approximately 12 months is anticipated. Recruitment of patients starts in the third quarter of 2020. The study duration of an individual patient is planned to be 3 months. After finishing all study-relevant procedures, therapy, and follow-up period, the patient is followed in terms of routine care and treated if necessary. Total trial duration: 18 months Duration of the clinical phase: 12 months First patient first visit (FPFV): 3rd Quarter 2020 Last patient first visit (LPFV): 2nd Quarter 2021 Last patient last visit (LPLV): 3rd Quarter 2021 Trial Report completed: 4th Quarter 2021 TRIAL REGISTRATION: EudraCT Number: 2020-001632-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE , registered on 04/04/2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2). The eCRF is attached (Additional file 3)
    corecore