31 research outputs found

    PtRu nanoparticles supported on noble carbons for ethanol electrooxidation

    Get PDF
    In this work, three cytosine derived nitrogen doped carbonaceous materials (noble carbons, NCs) with different atomic C/N ratios and porous networks have been synthesized and used as supports for PtRu electrocatalysts in the ethanol oxidation reaction (EOR) for clean hydrogen production. Both, the metal phase and the carbon support play critical roles in the electrocatalysts final performance. Lower NPs size distribution was obtained over supports with low atomic C/N ratios (i.e., 4 and 6) and defined porosity (i.e., 1701 m2 g−1 for PtRu/CNZ and 1834 m2 g−1 for PtRu/CLZ, respectively). In contrast, a lower C/N ratio and poor porous network (i.e., 65 m2 g−1, PtRu/CLK) led to the largest particle size and fostered an increase of the alloying degree between Pt and Ru NPs (i.e., 3 for C/N ~ 6 and 28 for C/N ~ 3). Electrochemical active surface area was found to increase with decreasing NPs size and the alloy extent, due to a higher availability of Pt active sites. Accelerated degradation tests showed that PtRu/NCs outperform similar to PtRu NPs on commercial carbon pointing at the stabilizing effect of NCs. PtRu/CNZ exhibited the best electrochemical performance (i.e., 69.1 mA mgPt−1), outperforming PtRu/CLZ and PtRu/CLK by 3- and 9-fold, respectively, due to a suitable compromise between particle sizes, degree of alloy, textural properties and elemental composition. Best anodes were scaled-up to a proton exchange membrane cell and PtRu/CNZ was proved to provide the best electrocatalytic activity (262 mA cm−2 and low energy requirements), matching the values obtained by the state of the art of EOR electrocatalysts

    Different strategies to simultaneously N-doping and reduce graphene oxide for electrocatalytic applications

    Get PDF
    Two different approaches to simultaneously introduce nitrogen atoms within the graphene framework and, reduce graphene oxide nanoplatelets (GO), have been explored in order to improve the electrocatalytic activity of the resulting materials. Thus, a facile hydrothermal method using 2-chloroethylamine under conditions at 180 °C and, another one, based in the formation of polypyrrole (PPy) on graphene oxide nanoplatelets by in situ polymerization of pyrrole monomer in the presence of GO, were compared through a deep characterization of the final materials by SEM, RAMAN, FTIR, XPS, Zeta potential, XRD and TGA analysis. Physico-chemical properties of the graphene-based materials were subsequently related with their electron transfer efficiency and electrocatalytic activity. The as prepared rGO prepared by the PPy method showed an N content quite superior (~6–8%) than the rGO prepared by the hydrothermal one (~1%) being an important part of their nitrogen state pyridinic type. The electrocatalytic results showed that GO exhibited higher specific capacitance than rGO materials due to its intrinsic higher porosity. However, the presence of N species seems to have a positive effect on the ORR activity, although the N incorporation through the PPy-rGO synthesis method seems to be the preferred one according for the complete ORR pathway.Se han explorado dos enfoques diferentes para introducir simultáneamente átomos de nitrógeno dentro del marco de grafeno y reducir las nanoplaquetas de óxido de grafeno ( GO) con el fin de mejorar la actividad electrocatalítica de los materiales resultantes. Así, se comparó un método hidrotermal fácil usando 2-cloroetilamina en condiciones a 180 °C y otro, basado en la formación de polipirrol (PPy) sobre nanoplaquetas de óxido de grafeno por polimerización in situ del monómero pirrol en presencia de GO. una caracterización profunda de los materiales finales por SEM, RAMAN, FTIR, XPS , potencial Zeta , XRD yanálisis TGA . Las propiedades fisicoquímicas de los materiales a base de grafeno se relacionaron posteriormente con su eficiencia de transferencia de electrones y su actividad electrocatalítica. El rGO preparado por el método PPy mostró un contenido de N bastante superior (~6–8%) que el rGO preparado por el hidrotermal (~1%) siendo una parte importante de su estado nitrogenado de tipo piridínico. Los resultados electrocatalíticos mostraron que GO exhibió una capacitancia específica más alta que los materiales rGO debido a su mayor porosidad intrínseca. Sin embargo, la presencia de especies de N parece tener un efecto positivo sobre la actividad de ORR, aunque la incorporación de N a través del método de síntesis de PPy-rGO parece ser el preferido según la vía completa de ORR

    Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With COVID-19 Admitted to the ICU

    Get PDF
    SARS-CoV-2 infection causes COVID-19, ranging from mild to critical disease in symptomatic subjects. It is essential to better understand the immunologic responses occurring in patients with the most severe outcomes. In this study, parameters related to the humoral immune response elicited against SARS-CoV-2 were analysed in 61 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centres in Madrid, Spain, during the first pandemic peak between April and June 2020. Subjects were allocated as mild patients without hospitalization, severe patients hospitalized or critical patients requiring ICU assistance. Critical patients showed significantly enhanced levels of B cells with memory and plasmablast phenotypes, as well as higher levels of antibodies against SARS-CoV-2 with neutralization ability, which were particularly increased in male gender. Despite all this, antibody-dependent cell-mediated cytotoxicity was defective in these individuals. Besides, patients with critical COVID-19 also showed increased IgG levels against herpesvirus such as CMV, EBV, HSV-1 and VZV, as well as detectable CMV and EBV viremia in plasma. Altogether, these results suggest an enhanced but ineffectual immune response in patients with critical COVID-19 that allowed latent herpesvirus reactivation. These findings should be considered during the clinical management of these patients due to the potential contribution to the most severe disease during SARS-CoV-2 infection.This work was supported by the Coordinated Research Activities at the Centro Nacional de Microbiología (CNM, Instituto de Salud Carlos III) (COV20_00679) to promote an integrated response against SARS-CoV-2 in Spain (Spanish Ministry of Science and Innovation) that is coordinated by Dr Inmaculada Casas (WHO National Influenza Center of the CNM) and a generous donation provided by Chiesi España, S.A.U. (Barcelona, Spain). The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication. This work was also supported by the Spanish Ministry of Economy and Competitiveness (PID2019 110275RB-I00); the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (ERDF); Miguel Servet - AESI, MPY 341/21. The work of ML-H and SR is financed by NIH grant R01AI143567. The work of MT is supported by Instituto de Salud Carlos III (COV20_00679). The work of LV is supported by a predoctoral grant from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER).S

    Conformationally rigid nucleoside probes help understand the role of sugar pucker and nucleobase orientation in the thrombin-binding aptamer

    Get PDF
    Modified thrombin-binding aptamers carrying 2′-deoxyguanine (dG) residues with locked North- or South-bicyclo[3.1.0]hexane pseudosugars were synthesized. Individual 2′-deoxyguanosines at positions dG5, dG10, dG14 and dG15 of the aptamer were replaced by these analogues where the North/anti and South/syn conformational states were confined. It was found that the global structure of the DNA aptamer was, for the most part, very accommodating. The substitution at positions 5, 10 and 14 with a locked South/syn-dG nucleoside produced aptamers with the same stability and global structure as the innate, unmodified one. Replacing position 15 with the same South/syn-dG nucleoside induced a strong destabilization of the aptamer, while the antipodal North/anti-dG nucleoside was less destabilizing. Remarkably, the insertion of a North/anti-dG nucleoside at position 14, where both pseudosugar conformation and glycosyl torsion angle are opposite with respect to the native structure, led to the complete disruption of the G-tetraplex structure as detected by NMR and confirmed by extensive molecular dynamics simulations. We conclude that conformationally locked bicyclo[3.1.0]hexane nucleosides appear to be excellent tools for studying the role of key conformational parameters that are critical for the formation of a stable, antiparallel G-tetrad DNA structures

    Measurement of W+W− production in association with one jet in proton–proton collisions at sqrt(s) = 8TeV with the ATLAS detector

    Get PDF
    The production of W boson pairs in association with one jet in pp collisions at View the MathML sources=8 TeV is studied using data corresponding to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of |η|<4.5|η|<4.5. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be View the MathML sourceσWWfid,1-jet=136±6(stat)±14(syst)±3(lumi) fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be View the MathML sourceσWWfid,≤1-jet=511±9(stat)±26(syst)±10(lumi) fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36±0.050.36±0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone
    corecore