122 research outputs found
Exploring causal correlations of inflammatory biomarkers in idiopathic normal-pressure hydrocephalus: insights from bidirectional Mendelian randomization analysis
Background and objectiveNeuroinflammatory processes have been identified as playing a crucial role in the pathophysiology of various neurodegenerative diseases, including idiopathic normal-pressure hydrocephalus (iNPH). iNPH, defined as a common disease of cognitive impairment in older adults, poses major challenges for therapeutic interventions owing to the stringent methodological requirements of relevant studies, clinical heterogeneity, unclear etiology, and uncertain diagnostic criteria. This study aims to assess the relationship between circulating inflammatory biomarkers and iNPH risk using bidirectional two-sample Mendelian randomization (MR) combined with meta-analysis.MethodsIn our bidirectional MR study, genetic data from a genome-wide association study (GWAS) involving 1,456 iNPH cases and 409,726 controls of European ancestry were employed. Single-nucleotide polymorphisms (SNPs) associated with exposures served as instrumental variables for estimating the causal relationships between iNPH and 132 types of circulating inflammatory biomarkers from corresponding GWAS data. Causal associations were primarily examined using the inverse variance-weighted method, supplemented by MR-Egger, weighted median, simple mode, and weighted mode analyses. In the results, heterogeneity was assessed using the Cochran Q test. Horizontal pleiotropy was evaluated through the MR-Egger intercept test and the MR pleiotropy residual sum and outliers test. Sensitivity analysis was conducted through leave-one-out analysis. Reverse MR analyses were performed to mitigate bias from reverse causality. Meta-analyses of identical inflammatory biomarkers from both data sources strengthened the findings.ResultsResults indicated a genetically predicted association between Interleukin-16 (IL-16) [OR: 1.228, 95% CI: 1.049–1.439, p = 0.011], TNF-related apoptosis ligand (TRAIL) [OR: 1.111, 95% CI: 1.019–1.210, p = 0.017] and Urokinase-type plasminogen activator (uPA) [OR: 1.303, 95% CI: 1.025–1.658, p = 0.031] and the risk of iNPH. Additionally, changes in human Glial cell line-derived neurotrophic factor (hGDNF) [OR: 1.044, 95% CI: 1.006–1.084, p = 0.023], Matrix metalloproteinase-1 (MMP-1) [OR: 1.058, 95% CI: 1.020, 1.098, p = 0.003] and Interleukin-12p70 (IL-12p70) [OR: 0.897, 95% CI: 0.946–0.997, p = 0.037] levels were identified as possible consequences of iNPH.ConclusionOur MR study of inflammatory biomarkers and iNPH, indicated that IL-16, TRAIL, and uPA contribute to iNPH pathogenesis. Furthermore, iNPH may influence the expression of hGDNF, MMP-1, and IL-12p70. Therefore, targeting specific inflammatory biomarkers could be promising strategy for future iNPH treatment and prevention
Construction and validation of a glioblastoma prognostic model based on immune-related genes
BackgroundGlioblastoma multiforme (GBM) is a common malignant brain tumor with high mortality. It is urgently necessary to develop a new treatment because traditional approaches have plateaued.PurposeHere, we identified an immune-related gene (IRG)-based prognostic signature to comprehensively define the prognosis of GBM.MethodsGlioblastoma samples were selected from the Chinese Glioma Genome Atlas (CGGA). We retrieved IRGs from the ImmPort data resource. Univariate Cox regression and LASSO Cox regression analyses were used to develop our predictive model. In addition, we constructed a predictive nomogram integrating the independent predictive factors to determine the one-, two-, and 3-year overall survival (OS) probabilities of individuals with GBM. Additionally, the molecular and immune characteristics and benefits of ICI therapy were analyzed in subgroups defined based on our prognostic model. Finally, the proteins encoded by the selected genes were identified with liquid chromatography-tandem mass spectrometry and western blotting (WB).ResultsSix IRGs were used to construct the predictive model. The GBM patients were categorized into a high-risk group and a low-risk group. High-risk group patients had worse survival than low-risk group patients, and stronger positive associations with multiple tumor-related pathways, such as angiogenesis and hypoxia pathways, were found in the high-risk group. The high-risk group also had a low IDH1 mutation rate, high PTEN mutation rate, low 1p19q co-deletion rate and low MGMT promoter methylation rate. In addition, patients in the high-risk group showed increased immune cell infiltration, more aggressive immune activity, higher expression of immune checkpoint genes, and less benefit from immunotherapy than those in the low-risk group. Finally, the expression levels of TNC and SSTR2 were confirmed to be significantly associated with patient prognosis by protein mass spectrometry and WB.ConclusionHerein, a robust predictive model based on IRGs was developed to predict the OS of GBM patients and to aid future clinical research
6-Shogaol Induces Apoptosis in Human Hepatocellular Carcinoma Cells and Exhibits Anti-Tumor Activity In Vivo through Endoplasmic Reticulum Stress
6-Shogaol is an active compound isolated from Ginger (Zingiber officinale Rosc). In this work, we demonstrated that 6-shogaol induces apoptosis in human hepatocellular carcinoma cells in relation to caspase activation and endoplasmic reticulum (ER) stress signaling. Proteomic analysis revealed that ER stress was accompanied by 6-shogaol-induced apoptosis in hepatocellular carcinoma cells. 6-shogaol affected the ER stress signaling by regulating unfolded protein response (UPR) sensor PERK and its downstream target eIF2α. However, the effect on the other two UPR sensors IRE1 and ATF6 was not obvious. In prolonged ER stress, 6-shogaol inhibited the phosphorylation of eIF2α and triggered apoptosis in SMMC-7721 cells. Salubrinal, an activator of the PERK/eIF2α pathway, strikingly enhanced the phosphorylation of eIF2α in SMMC-7721 cells with no toxicity. However, combined treatment with 6-shogaol and salubrinal resulted in significantly increase of apoptosis and dephosphorylation of eIF2α. Overexpression of eIF2α prevented 6-shogaol-mediated apoptosis in SMMC-7721 cells, whereas inhibition of eIF2α by small interfering RNA markedly enhanced 6-shogaol-mediated cell death. Furthermore, 6-shogaol-mediated inhibition of tumor growth of mouse SMMC-7721 xenograft was associated with induction of apoptosis, activation of caspase-3, and inactivation of eIF2α. Altogether our results indicate that the PERK/eIF2α pathway plays an important role in 6-shogaol-mediated ER stress and apoptosis in SMMC-7721 cells in vitro and in vivo
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Pretreatment glycemic control status is an independent prognostic factor for cervical cancer patients receiving neoadjuvant chemotherapy for locally advanced disease
Abstract Background To investigate whether poor glycemic control status has a negative impact on survival outcomes and tumor response to chemotherapy in patients receiving neoadjuvant chemotherapy (NACT) for locally advanced cervical cancer (LACC). Methods A retrospective cohort study was conducted to examine LACC patients undergoing NACT and radical hysterectomy between 2002 and 2011. Patients were divided into three groups: patients without diabetes mellitus (DM), diabetic patients with good glycemic control, and diabetic patients with poor glycemic control. Hemoglobin A1c (HbA1c) levels were used to indicate glycemic control status. Recurrence-free survival (RFS), cancer-specific survival (CSS) and overall survival (OS) were analyzed using log-rank tests and Cox proportional hazards models. Results In total, 388 patients were included and had a median follow-up time of 39 months (range: 4–67 months). Diabetes mellitus (DM) was diagnosed in 89 (22.9%) patients, only 35 (39.3%) of whom had good glycemic control prior to NACT (HbA1c < 7.0%). In survival analysis, compared with patients with good glycemic control and patients without DM, patients with poor glycemic control (HbA1c ≥ 7.0%) exhibited decreased recurrence-free survival (RFS), cancer-specific survival (CSS) and overall survival (OS). In multivariate analysis, HbA1c ≥ 7.0% was identified as an independent predictor for decreased RFS (hazard ratio [HR] = 3.33, P < 0.0001), CSS (HR = 3.60, P < 0.0001) and OS (HR = 4.35, P < 0.0001). In the subgroup of diabetic patients, HbA1c ≥ 7.0% prior to NACT had an independent negative effect on RFS (HR = 2.18, P = 0.044) and OS (HR = 2.29, P = 0.012). When examined as a continuous variable, the HbA1c level was independently associated with decreased RFS (HR = 1.39, P = 0.002), CSS (HR = 1.28, P = 0.021) and OS (HR = 1.27, P = 0.004). Both good (odds ratio [OR] = 0.06, P < 0.0001) and poor glycemic control (OR = 0.04, P < 0.0001) were independently associated with a decreased likelihood of complete response following NACT. Conclusions Poor glycemic control is an independent predictor of survival and tumor response to chemotherapy for patients receiving NACT for LACC
Transformer Winding Deformation Detection Based on BOTDR and ROTDR
In order to realize distributed measurement of transformer winding temperature and deformation, a transformer winding modification scheme with a built-in distributed optical fiber was designed. By laying a single-mode fiber and a multi-mode fiber on the transformer winding, the Brillouin optical time domain reflection technique (BOTDR) and the Raman optical time domain reflection technique (ROTDR) are used to measure the strain and temperature of the winding to complete the more accurate winding deformation detection. The accuracy of strain and temperature sensing of this scheme was verified by simulation. Then, according to the scheme, a winding model was actually wound, and the deformation and temperature rise tests were carried out. The test results show that this scheme can not only realize the deformation detection and positioning of the winding, but can also realize the measurement of the winding temperature; the temperature measurement accuracy reached ±0.5 °C, the strain measurement accuracy was 200 με, and spatial resolution was up to 5 m. In this experiment, the deformation location with the precision of 2 turns was realized on the experimental winding
Protease inhibitor ASP enhances freezing tolerance by inhibiting protein degradation in kumquat
Cold acclimation is a complex biological process leading to the development of freezing tolerance in plants. In this study, we demonstrated that cold-induced expression of protease inhibitor FmASP in a Citrus-relative species kumquat [Fortunella margarita (Lour.) Swingle] contributes to its freezing tolerance by minimizing protein degradation. Firstly, we found that only cold-acclimated kumquat plants, despite extensive leaf cellular damage during freezing, were able to resume their normal growth upon stress relief. To dissect the impact of cold acclimation on this anti-freezing performance, we conducted protein abundance assays and quantitative proteomic analysis of kumquat leaves subjected to cold acclimation (4◦C), freezing treatment (−10◦C) and post-freezing recovery (25◦C). FmASP (Against Serine Protease) and several non-specific proteases were identified as differentially expressed proteins induced by cold acclimation and associated with stable protein abundance throughout the course of low-temperature treatment. FmASP was further characterized as a robust inhibitor of multiple proteases. In addition, heterogeneous expression of FmASP in Arabidopsis confirmed its positive role in freezing tolerance. Finally, we proposed a working model of FmASP and illustrated how this extracellular-localized protease inhibitor protects proteins from degradation, therebymaintaining essential cellular function for post-freezing recovery. These findings revealed the important role of protease inhibition in freezing response and provide insights on how this role may help develop new strategies to enhance plant freezing tolerance
- …