86 research outputs found

    Fontan-Associated Dyslipidemia

    Get PDF
    Background Hypocholesterolemia is a marker of liver disease, and patients with a Fontan circulation may have hypocholesterolemia secondary to Fontan-associated liver disease or inflammation. We investigated circulating lipids in adults with a Fontan circulation and assessed the associations with clinical characteristics and adverse events. Methods and Results We enrolled 164 outpatients with a Fontan circulation, aged ≥ 18 years, in the Boston Adult Congenital Heart Disease Biobank and compared them with 81 healthy controls. The outcome was a combined outcome of nonelective cardiovascular hospitalization or death. Participants with a Fontan (median age, 30.3 [interquartile range, 22.8–34.3 years], 42% women) had lower total cholesterol (149.0±30.1 mg/dL versus 190.8±41.4 mg/dL, P\u3c 0.0001), low‐density lipoprotein cholesterol (82.5±25.4 mg/dL versus 102.0±34.7 mg/dL, P\u3c 0.0001), and high‐density lipoprotein cholesterol (42.8±12.2 mg/dL versus 64.1±16.9 mg/dL, P\u3c 0.0001) than controls. In those with a Fontan, high‐density lipoprotein cholesterol was inversely correlated with body mass index (r=−0.30, P\u3c 0.0001), high‐sensitivity C‐reactive protein (r=−0.27, P=0.0006), and alanine aminotransferase (r=−0.18, P=0.02) but not with other liver disease markers. Lower high‐density lipoprotein cholesterol was independently associated with greater hazard for the combined outcome adjusting for age, sex, body mass index, and functional class (hazard ratio [HR] per decrease of 10 mg/dL, 1.37; 95% CI, 1.04–1.81 [P=0.03]). This relationship was attenuated when log high‐sensitivity C‐reactive protein was added to the model (HR, 1.26; 95% CI, 0.95–1.67 [P=0.10]). Total cholesterol, low‐density lipoprotein cholesterol, and triglycerides were not associated with the combined outcome. Conclusions The Fontan circulation is associated with decreased cholesterol levels, and lower high‐density lipoprotein cholesterol is associated with adverse outcomes. This association may be driven by inflammation. Further studies are needed to understand the relationship between the severity of Fontan‐associated liver disease and lipid metabolism

    Nomenclature for kidney function and disease: report of a Kidney Disease:Improving Global Outcomes (KDIGO) Consensus Conference

    Get PDF
    The worldwide burden of kidney disease is rising, but public awareness remains limited, underscoring the need for more effective communication by stakeholders in the kidney health community. Despite this need for clarity, the nomenclature for describing kidney function and disease lacks uniformity. In June 2019, Kidney Disease: Improving Global Outcomes (KDIGO) convened a Consensus Conference with the goal of standardizing and refining the nomenclature used in the English language to describe kidney function and disease, and of developing a glossary that could be used in scientific publications. Guiding principles of the conference were that the revised nomenclature should be patient-centered, precise, and consistent with nomenclature used in the KDIGO guidelines. Conference attendees reached general consensus on the following recommendations: (i) to use "kidney" rather than "renal" or "nephro-" when referring to kidney disease and kidney function; (ii) to use "kidney failure" with appropriate descriptions of presence or absence of symptoms, signs, and treatment, rather than "end-stage kidney disease"; (iii) to use the KDIGO definition and classification of acute kidney diseases and disorders (AKD) and acute kidney injury (AKI), rather than alternative descriptions, to define and classify severity of AKD and AKI; (iv) to use the KDIGO definition and classification of chronic kidney disease (CKD) rather than alternative descriptions to define and classify severity of CKD; and (v) to use specific kidney measures, such as albuminuria or decreased glomerular filtration rate (GFR), rather than "abnormal" or "reduced" kidney function to describe alterations in kidney structure and function. A proposed 5-part glossary contains specific items for which there was general agreement. Conference attendees acknowledged limitations of the recommendations and glossary, but they considered standardization of scientific nomenclature to be essential for improving communication

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Epidemic reconstruction in a Phylogenetics framework:Transmission trees as partitions of the node set

    Get PDF
    The reconstruction of transmission trees for epidemics from genetic data has been the subject of some recent interest. It has been demonstrated that the transmission tree structure can be investigated by augmenting internal nodes of a phylogenetic tree constructed using pathogen sequences from the epidemic with information about the host that held the corresponding lineage. In this paper, we note that this augmentation is equivalent to a correspondence between transmission trees and partitions of the phylogenetic tree into connected subtrees each containing one tip, and provide a framework for Markov Chain Monte Carlo inference of phylogenies that are partitioned in this way, giving a new method to co-estimate both trees. The procedure is integrated in the existing phylogenetic inference package BEAST.Comment: 40 pages, 3 figure
    corecore