24 research outputs found

    Crickets.

    Get PDF
    2 p

    A Computationally-Efficient Probabilistic Approach to Model-Based Damage Diagnosis

    Get PDF
    This work presents a computationally-efficient, probabilistic approach to model-based damage diagnosis. Given measurement data, probability distributions of unknown damage parameters are estimated using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Substantial computational speedup is obtained by replacing a three-dimensional finite element (FE) model with an efficient surrogate model. While the formulation is general for arbitrary component geometry, damage type, and sensor data, it is applied to the problem of strain-based crack characterization and experimentally validated using full-field strain data from digital image correlation (DIC). Access to full-field DIC data facilitates the study of the effectiveness of strain-based diagnosis as the distance between the location of damage and strain measurements is varied. The ability of the framework to accurately estimate the crack parameters and effectively capture the uncertainty due to measurement proximity and experimental error is demonstrated. Furthermore, surrogate modeling is shown to enable diagnoses on the order of seconds and minutes rather than several days required with the FE model

    IMPACT OF A MORE INTENSIVE INSECT PEST INFESTATION LEVEL ON COTTON PRODUCTION: TEXAS HIGH PLAINS

    Get PDF
    This study evaluated implications of increased bollworm problems in a 20-county area of the Texas High Plains relative to cotton yields and economic impact. Results did not indicate a serious effect of bollworms upon lint yield when insecticides were used for control. However, estimated annual reduction in farmer profit due to the bollworm for 1979-81 was over $30 million. Yields were estimated to decline about 300,000 bales without insecticide use and about 30,000 bales with insecticide use. This decline suggests potentially serious implications for the comparative economic position of cotton in this region if insecticide resistance were to develop among insect pests.Crop Production/Industries,

    Neonatal Colonisation Expands a Specific Intestinal Antigen-Presenting Cell Subset Prior to CD4 T-Cell Expansion, without Altering T-Cell Repertoire

    Get PDF
    Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα+) antigen-presenting cell subset, whilst SIRPα−CD11R1+ antigen-presenting cells (APCs) are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα+ antigen-presenting cells as orchestrators of early-life mucosal immune development

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore