748 research outputs found

    Quantum Hamiltonian Reduction of the Schwinger Model

    Get PDF
    We reexamine a unitary-transformation method of extracting a physical Hamiltonian from a gauge field theory after quantizing all degrees of freedom including redundant variables. We show that this {\it quantum Hamiltonian reduction} method suffers from crucial modifications arising from regularization of composite operators. We assess the effects of regularization in the simplest gauge field theory, the Schwinger model. Without regularization, the quantum reduction yields the identical Hamiltonian with the classically reduced one. On the other hand, with regularization incorporated, the resulting Hamiltonian of the quantum reduction disagrees with that of the classical reduction. However, we find that the discrepancy is resolved by redefinitions of fermion currents and that the results are again consistent with those of the classical reduction.Comment: 23 pages, LaTeX file, UT-Komaba 94-

    Pedestrian Solution of the Two-Dimensional Ising Model

    Full text link
    The partition function of the two-dimensional Ising model with zero magnetic field on a square lattice with m x n sites wrapped on a torus is computed within the transfer matrix formalism in an explicit step-by-step approach inspired by Kaufman's work. However, working with two commuting representations of the complex rotation group SO(2n,C) helps us avoid a number of unnecessary complications. We find all eigenvalues of the transfer matrix and therefore the partition function in a straightforward way.Comment: 10 pages, 2 figures; eqs. (101) and (102) corrected, files for fig. 2 fixed, minor beautification

    The Massive Multi-flavor Schwinger Model

    Get PDF
    QED with N species of massive fermions on a circle of circumference L is analyzed by bosonization. The problem is reduced to the quantum mechanics of the 2N fermionic and one gauge field zero modes on the circle, with nontrivial interactions induced by the chiral anomaly and fermions masses. The solution is given for N=2 and fermion masses (m) much smaller than the mass of the U(1) boson with mass \mu=\sqrt{2e^2/\pi} when all fermions satisfy the same boundary conditions. We show that the two limits m \go 0 and L \go \infty fail to commute and that the behavior of the theory critically depends on the value of mL|\cos\onehalf\theta| where \theta is the vacuum angle parameter. When the volume is large \mu L \gg 1, the fermion condensate is -(e^{4\gamma} m\mu^2 \cos^4\onehalf\theta/4\pi^3)^{1/3} or $-2e^\gamma m\mu L \cos^2 \onehalf\theta /\pi^2 for mL(\mu L)^{1/2} |\cos\onehalf\theta| \gg 1 or \ll 1, respectively. Its correlation function decays algebraically with a critical exponent \eta=1 when m\cos\onehalf\theta=0.Comment: 16 pages, latex, uses epsf.sty; replaced with latex src

    Mass Spectra of Supersymmetric Yang-Mills Theories in 1+1 Dimensions

    Get PDF
    Physical mass spectra of supersymmetric Yang-Mills theories in 1+1 dimensions are evaluated in the light-cone gauge with a compact spatial dimension. The supercharges are constructed and the infrared regularization is unambiguously prescribed for supercharges, instead of the light-cone Hamiltonian. This provides a manifestly supersymmetric infrared regularization for the discretized light-cone approach. By an exact diagonalization of the supercharge matrix between up to several hundred color singlet bound states, we find a rapidly increasing density of states as mass increases.Comment: LaTeX file, 32 page, 7 eps figure

    Towards Solving QCD - The Transverse Zero Modes in Light-Cone Quantization

    Get PDF
    We formulate QCD in (d+1) dimensions using Dirac's front form with periodic boundary conditions, that is, within Discretized Light-Cone Quantization. The formalism is worked out in detail for SU(2) pure glue theory in (2+1) dimensions which is approximated by restriction to the lowest {\it transverse} momentum gluons. The dimensionally-reduced theory turns out to be SU(2) gauge theory coupled to adjoint scalar matter in (1+1) dimensions. The scalar field is the remnant of the transverse gluon. This field has modes of both non-zero and zero {\it longitudinal} momentum. We categorize the types of zero modes that occur into three classes, dynamical, topological, and constrained, each well known in separate contexts. The equation for the constrained mode is explicitly worked out. The Gauss law is rather simply resolved to extract physical, namely color singlet states. The topological gauge mode is treated according to two alternative scenarios related to the In the one, a spectrum is found consistent with pure SU(2) gluons in (1+1) dimensions. In the other, the gauge mode excitations are estimated and their role in the spectrum with genuine Fock excitations is explored. A color singlet state is given which satisfies Gauss' law. Its invariant mass is estimated and discussed in the physical limit.Comment: LaTex document, 26 pages, one figure (obtainable by contacting authors). To appear in Physical. Review

    Surface preparation of powder metallurgical tool steels by means of wire electrical discharge machining

    Get PDF
    The surface of two types of powder metallurgical (PM) tool steels (i.e., with and without nitrogen) was prepared using wire electrical discharge machining (WEDM). From each grade of tool steel, seven surfaces corresponding to one to seven passes of WEDM were prepared. The WEDM process was carried out using a brass wire as electrode and deionized water as dielectric. After eachWEDM pass the surface of the tool steels was thoroughly examined. Surface residual stresses were measured by the X-ray diffraction (XRD) technique. The measured stresses were found to be of tensile nature. The surface roughness of the WEDM specimens was measured using interference microscopy. The surface roughness as well as the residual stress measurements indicated an insignificant improvement of these parameters after four passes of WEDM. In addition, the formed recast layer was characterized by means of scanning electron microscopy (SEM), XRD, and X-ray photoelectron spectroscopy (XPS). The characterization investigation clearly shows diffusion of copper and zinc from the wire electrode into the work material, even after the final WEDM step. Finally, the importance of eliminating excessive WEDM steps is thoroughly discussed

    The position of graptolites within Lower Palaeozoic planktic ecosystems.

    Get PDF
    An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms

    Atom lasers: production, properties and prospects for precision inertial measurement

    Full text link
    We review experimental progress on atom lasers out-coupled from Bose-Einstein condensates, and consider the properties of such beams in the context of precision inertial sensing. The atom laser is the matter-wave analog of the optical laser. Both devices rely on Bose-enhanced scattering to produce a macroscopically populated trapped mode that is output-coupled to produce an intense beam. In both cases, the beams often display highly desirable properties such as low divergence, high spectral flux and a simple spatial mode that make them useful in practical applications, as well as the potential to perform measurements at or below the quantum projection noise limit. Both devices display similar second-order correlations that differ from thermal sources. Because of these properties, atom lasers are a promising source for application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references and figure

    Dynamical Zero Modes and Pure Glue QCD1+1{\bf{\rm{QCD}}_{1+1}} in Light-Cone Field Theory

    Full text link
    We consider light-cone quantized QCD1+1{\rm{QCD}}_{1+1} on a `cylinder' with periodic boundary conditions on the gluon fields. This is the framework of discretized light-cone quantization. We review the argument that the light-cone gauge A+=0A^+=0 is not attainable. The zero mode is a dynamical and gauge invariant field. The attainable gauge has a Gribov ambiguity. We exactly solve the problem of pure glue theory coupled to some zero mode external sources. We verify the identity of the front and the more familiar instant form approaches. We obtain a discrete spectrum of vacuum states and their wavefunctions.Comment: 13 pages LaTex report#: OHSTPY-HEP-TH-94-001, MPIH-V9-94 Revised version 2-- minor changes to equations and discussion. Submitted to Physical Review

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore