7 research outputs found

    Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer

    Get PDF
    Lysine-specific demethylase 6A (KDM6A) and members of the Switch/Sucrose Non-Fermentable (SWI/SNF) family are known to counteract the activity of Enhancer of Zeste Homolog 2 (EZH2), which is often overexpressed and is associated with poor prognosis in muscle-invasive bladder cancer. Here we provide evidence that alterations in chromatin modifying enzymes, including KDM6A and members of the SWI/SNF complex, are frequent in muscle-invasive bladder cancer. We exploit the loss of function mutations in KDM6A and SWI/SNF complex to make bladder cancer cells susceptible to EZH2-based epigenetic therapy that activates an immune response to drive tumor cell differentiation and death. We reveal a novel mechanism of action of EZH2 inhibition, alone and in combination with cisplatin, which induces immune signaling with the largest changes observed in interferon gamma (IFN-γ). This upregulation is a result of activated natural killer (NK) signaling as demonstrated by the increase in NK cell-associated genes MIP-1α, ICAM1, ICAM2, and CD86 in xenografts treated with EZH2 inhibitors. Conversely, EZH2 inhibition results in decreased expression of pluripotency markers, ALDH2 and CK5, and increased cell death. Our results reveal a novel sensitivity of muscle-invasive bladder cancer cells with KMD6A and SWI/SNF mutations to EZH2 inhibition alone and in combination with cisplatin. This sensitivity is mediated through increased NK cell-related signaling resulting in tumor cell differentiation and cell death.Fil: Ramakrishnan, Swathi. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Granger, Victoria. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Rak, Monica. Jagiellonian University; PoloniaFil: Hu, Qiang. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Attwood, Kristopher. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Aquila, Lanni. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Krishnan, Nithya. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Osiecki, Rafal. Medical University Of Warsaw; PoloniaFil: Azabdaftari, Gissou. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Guru, Khurshid. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Chatta, Gurkamal. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: McNally, Lacey. Wake Forest Comprehensive Cancer Center; Estados UnidosFil: Ohm, Joyce. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Wang, Jianmin. Roswell Park Comprehensive Cancer Center; Estados UnidosFil: Woloszynska-Read, Anna. Roswell Park Comprehensive Cancer Center; Estados Unido

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks

    No full text
    Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks

    Physiological and pathological roles of mitochondrial SLC25 carriers

    No full text

    Thermoregulation: What Role for UCPs in Mammals and Birds?

    No full text
    corecore