140 research outputs found

    The nucleoporin Nup60p functions as a Gsp1p–GTP-sensitive tether for Nup2p at the nuclear pore complex

    Get PDF
    The nucleoporins Nup60p, Nup2p, and Nup1p form part of the nuclear basket structure of the Saccharomyces cerevisiae nuclear pore complex (NPC). Here, we show that these necleoporins can be isolated from yeast extracts by affinity chromatography on karyopherin Kap95p-coated beads. To characterize Nup60p further, Nup60p-coated beads were used to capture its interacting proteins from extracts. We find that Nup60p binds to Nup2p and serves as a docking site for Kap95p–Kap60p heterodimers and Kap123p. Nup60p also binds Gsp1p–GTP and its guanine nucleotide exchange factor Prp20p, and functions as a Gsp1p guanine nucleotide dissociation inhibitor by reducing the activity of Prp20p. Yeast lacking Nup60p exhibit minor defects in nuclear export of Kap60p, nuclear import of Kap95p–Kap60p-dependent cargoes, and diffusion of small proteins across the NPC. Yeast lacking Nup60p also fail to anchor Nup2p at the NPC, resulting in the mislocalization of Nup2p to the nucleoplasm and cytoplasm. Purified Nup60p and Nup2p bind each other directly, but the stability of the complex is compromised when Kap60p binds Nup2p. Gsp1p–GTP enhances by 10-fold the affinity between Nup60p and Nup2p, and restores binding of Nup2p–Kap60p complexes to Nup60p. The results suggest a dynamic interaction, controlled by the nucleoplasmic concentration of Gsp1p–GTP, between Nup60p and Nup2p at the NPC

    Bracket formalism applied to phase field models of alloy solidification

    Get PDF
    We present a method for coupling current phase field models of alloy solidification into general continuum modelling. The advantages of this approach are to provide a generic framework for phase field modelling, give a natural and thermodynamically consistent extension to non-isothermal modelling, and to see phase field models in a wider context. The bracket approach, introduced by Beris and Edwards, is an extension of the Poisson bracket of Hamiltonian mechanics to include dissipative phenomena. This paper demonstrates the working of this formalism for a variety of alloy solidification models including multi phase, multi species with thermal and density dependency. We present new models by deriving temperature equations for single and more general phase field models, and postulate a density dependent formulation which couples phase field to flow

    Regulating C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> adsorption selectivity by electronic-state manipulation of iron in metal-organic frameworks

    Get PDF
    The separation of C2H2 from C2H2/CO2 mixture is of great importance, yet highly challenging in the petrochemical industry due to their similar physicochemical properties. While open-metal sites (OMSs) in metal-organic frameworks (MOFs) are known to possess high affinity toward C2H2, its selective adsorption performance regulated by the electronic state of the same OMSs remains unexplored. Here, we report a metal electronic-state manipulation approach to construct a pair of isostructural Fe-MOFs, namely LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) with different Fe[II] or Fe[III] oxidation states on the Fe centers, which display mixed-valent Fe[II]/Fe[III] centers in the former and sole Fe[III] centers in the latter. Remarkably, LIFM-26(Fe[II]/Fe[III]) shows significantly enhanced C2H2 uptake capacity than LIFM-27(Fe[III]), attested by adsorption isotherms and IAST calculations, as well as simulated and experimental breakthrough experiments. Furthermore, in situ infrared (IR) and molecular calculations unveil that the presence of Fe[II] in LIFM-26(Fe[II]/Fe[III]) results in stronger Fe[II]–C2H2 interactions than Fe[III]–C2H2, which plays a key role in the C2H2/CO2 separation

    Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization

    Get PDF
    We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ\mu-strongly convex objective functions with LL-Lipschitz continuous gradient. In the framework of Nesterov both μ\mu and LL are assumed known -- an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ\mu and LL during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. The results show that for ill-conditioned problems solved to high accuracy, the proposed method significantly outperforms state-of-the-art first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure

    Biceps, Bitches and Borgs: Reading <i>Jarhead</i>’s Representation of the Construction of the (Masculine) Military Body

    Get PDF
    This paper explores the relationship between masculinity, the body and the military through a close reading of the film Jarhead. Drawing on a Foucauldian frame of analysis, we consider three performances of the masculine military body that form key aspects of the film’s representational economy: the disciplined body, an outcome of the processes of basic training; the gendered body, realized through deployment of metaphors of the feminine to strengthen the masculine conception of the military body; and the cyborgian body, the result of the man-machine interface which is rapidly developing in many militaries around the world, and which poses significant questions for performances of military masculinity. We conclude by suggesting that the film’s rendering of the material and discursive body reveals an unexpected tension between the expectations of military bodies and the lived experience of their labour. As well as augmenting empirical explorations of male-worker-bodies and analysing the occupation of soldier as requiring a unique kind of body work, our contribution to the body-organization literature turns upon the claim that docile military bodies are made fit for purpose, but may actually no longer have a purpose for which to be fit

    Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset

    Get PDF
    A search for neutrinoless double-β decay (0νββ) in Xe136 is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νββ and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of Xe136 0νββ has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νββ half-life sensitivity for this analysis is 5.0×1025 yr with a total Xe136 exposure of 234.1 kg yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 3.5×1025 yr at the 90% confidence level

    The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    __Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. __Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. __Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. __Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore