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Regulating C2H2/CO2 adsorption selectivity
by electronic-state manipulation
of iron in metal-organic frameworks

Cheng-Xia Chen,1,2 Tony Pham,3 Kui Tan,4 Rajamani Krishna,6 Pui Ching Lan,2 Longfei Wang,1

Songbo Chen,7 Abdullah M. Al-Enizi,8 Ayman Nafady,8 Katherine A. Forrest,3 Haiping Wang,2

Sicheng Wang,2 Chuan Shan,3 Lei Zhang,5 Cheng-Yong Su,1,9,* and Shengqian Ma2,9,*
1MOE Laboratory of Bioinorganic and Synthetic
Chemistry, Lehn Institute of Functional Materials,
School of Chemistry, Sun Yat-Sen University,
SUMMARY

The separation of C2H2 from C2H2/CO2 mixture is of great impor-
tance, yet highly challenging in the petrochemical industry due to
their similar physicochemical properties. While open-metal sites
(OMSs) in metal-organic frameworks (MOFs) are known to possess
high affinity toward C2H2, its selective adsorption performance
regulated by the electronic state of the same OMSs remains unex-
plored. Here, we report a metal electronic-state manipulation
approach to construct a pair of isostructural Fe-MOFs, namely
LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) with different Fe[II] or Fe
[III] oxidation states on the Fe centers, which display mixed-
valent Fe[II]/Fe[III] centers in the former and sole Fe[III] centers in
the latter. Remarkably, LIFM-26(Fe[II]/Fe[III]) shows significantly
enhanced C2H2 uptake capacity than LIFM-27(Fe[III]), attested by
adsorption isotherms and IAST calculations, as well as simulated
and experimental breakthrough experiments. Furthermore, in situ
infrared (IR) and molecular calculations unveil that the presence of
Fe[II] in LIFM-26(Fe[II]/Fe[III]) results in stronger Fe[II]–C2H2 interac-
tions than Fe[III]–C2H2, which plays a key role in the C2H2/CO2 sep-
aration.
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INTRODUCTION

Industrial chemical separations account for 10%–15% of the global energy consump-

tion, which corresponds to half of the United States’s industrial energy use.1 Among

them, acetylene (C2H2) purification represents an energy- and cost-intensive process.2

Asoneof themostwidely used feedstocks in thepetroleum industry,C2H2 ismainlypro-

ducedby the combustionofmethaneor thermal crackingof petroleum,withCO2 as the

major byproduct.3 Therefore, separating CO2 from C2H2/CO2 gas mixture is of great

importance. Presently, the industrial separation of CO2 from C2H2 is usually imple-

mented through solvent extraction and cryogenic distillation, leading to intensive costs

and energy penalties due to their similar physicochemical properties (molecular sizes

and shapes: 3.32 3 3.34 3 5.70 Å3 for C2H2, 3.18 3 3.33 3 5.36 Å3 for CO2; boiling

points: 189.3 and 194.7 K for C2H2 and CO2, respectively).
4,5 As a result, adsorptive

separation based on porous solid materials has drawn much attention owing to the

advantage of dramatically reducing the energy and cost consumption.6–10

Owing to their structural diversity, designable pore size, high pore volume, and

tunable functionalities, metal-organic frameworks (MOFs) have shown great
Cell Reports Physical Science 3, 100977, August 17, 2022 ª 2022 The Author(s).
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Scheme 1. Schematic synthetic route of Fe-MOF isostructures with different ratios of Fe[II] and

Fe[III] centers through a metal electronic-state manipulation strategy
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potentials in gas adsorption and separation involving C2H2/CO2, C2H4/C2H6,

C3H6/C3H8, N2/O2, CO/H2, and CO/N2.
8–15 However, it is still challenging to ratio-

nally design MOFs for C2H2/CO2 separation due to their similar dynamic sizes and

volatility. Tremendous efforts have been devoted to developing highly effective

MOF adsorbents, suggesting that the introduction of open-metal sites (OMSs)

into suitable pore space is most likely to be competent for this task.16–24 The suitable

pore space (appropriate pore size, high pore volume, and polar pore surface) can

render the framework with a high C2H2 adsorption working capacity and facilitates

adsorption dynamics.25–30 In addition, the OMSs with exposed partial positive

charges not only behave as Lewis-acid-accepting electrons from the electron lone

pair orbital of C2H2 but also function as a p-bond back donor providing electrons

to C2H2 (delocalizing d electrons to the antibonding p* orbitals of C2H2), thus result-

ing in preferential adsorption toward C2H2 over CO2.
26,31–33 However, it is extremely

difficult to combine exposed positive charges and strong p back donors into a single

material. Actually, most MOFs with OMSs present weak p-bond back donation due

to their electron-poor metal centers, and only a few MOFs featuring exposed elec-

tron-rich metal centers are found to be suitable for p-bond back donation.32,34–36

In order to functionalize MOFs with electron-rich OMSs for highly selective C2H2

adsorption, it is anticipated that the manipulation of the mixed-valent electronic

states of exposedmetal centers in a suitable MOF pore space is an effective yet chal-

lenging strategy. The introduction of an appropriate low-valent metal center can

impart enhanced p back donation, thereby facilitating the preferential C2H2 adsorp-

tion over CO2, while the presence of a high-valent metal center can allow for facile

desorption of C2H2 due to the moderate metal-adsorbate interactions. Herein, we

report a pair of isostructural Fe-MOFs, namely LIFM-26(Fe[II]/Fe[III])37 and LIFM-

27(Fe[III]) (LIFM stands for Lehn Institute of Functional Materials) that possess pore

spaces constructed from the same perchlorinated ligand (2,3,5,6-tetrachloride ter-

ephthalic acid [TCDC]) (Scheme S1) and oxidation-state variant Fe[II]/Fe[III] centers

(Scheme 1). Both structures feature coordinately unsaturated Fe centers, in which

the ratios of Fe[II] and Fe[III] can be purposely tuned through an in situ redox process

(Scheme 1), endowing the isostructural Fe-MOFs with distinct C2H2 selective

adsorption performance. It is worth noting that LIFM-26(Fe[II]/Fe[III]) and LIFM-

27(Fe[III]) are interconvertible as the isostructures of (Fe[II]/Fe[III])3O(TFBDC)3
(TFBDC = 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate),38 providing ideal exam-

ples for studying the inherent relationship between the metal electronic-state and

adsorption performance. Compared with LIFM-27(Fe[III]), the increased electron

density in LIFM-26(Fe[II]/Fe[III]) affords much higher C2H2 uptake capacity and supe-

rior C2H2 selectivity over CO2 in the low-pressure region, due to the stronger Fe[II]-

adsorbate interactions than Fe[III]-C2H2, which illustrates that manipulation of the

electronic-state of OMSs can lead to enhanced preferential C2H2 adsorption.
2 Cell Reports Physical Science 3, 100977, August 17, 2022
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Moreover, the combined studies of ideal adsorbed solution theory (IAST) calcula-

tions, simulated/experimental dynamic breakthrough experiments, molecular simu-

lations, and in situ infrared (IR) analysis well confirm that the exposed Fe[II] center

with a strong p back-donation character plays a crucial role in the enhanced C2H2/

CO2 separation.

RESULTS AND DISCUSSION

Synthesis and structure determination

LIFM-26(Fe[II]/Fe[III]) was synthesized according to our previously reported method

with a slight modification.37 The slow diffusion of triethylamine vapor into a mixture

of N,N0-dimethylformamide (DMF) and water dissolving TCDC ligand and FeCl2 for

3 days afforded LIFM-26(Fe[II]/Fe[III]) crystals, during which Fe[II] was partially

oxidized into Fe[III]. In comparison, LIFM-27(Fe[III]) was obtained by extending the

vapor diffusion time to 1 month, during which Fe[II] was completely oxidized into

Fe[III] (Scheme 1). Notably, LIFM-27(Fe[III]) can be transformed back to LIFM-26(Fe

[II]/Fe[III]) via soaking the samples in ethanol solution for 3 days at 75�C (denoted

as LIFM-27(Fe[III])-EtOH; Figure S10), showing solvent-dependent redox property.

Single-crystal X-ray diffraction (SCXRD) analyses reveal that LIFM-26(Fe[II]/Fe[III])

and LIFM-27(Fe[III]) crystalize in the P-3 and P21/n space groups, respectively (Table

S1). Both of them possess the same acs net topology as (Fe[II]/Fe[III])3O(TFBDC)3,

which is constructed from perfluorinated ligand TFBDC and FeCl2 (Figure 1).

Compared with (Fe[II]/Fe[III])3O(TFBDC)3, the Fe3O clusters in LIFM-26(Fe[II]/Fe

[III]) and LIFM-27(Fe[III]) are twisted without the C3 axis of symmetry perpendicular

to the Fe3O plane due to the large steric hindrance of chlorine atoms. The Fe-(m3-

O)-Fe angles in LIFM-26(Fe[II]/Fe[III]) are 115.8�, 120.9�, and 123.3�, while those in

LIFM-27(Fe[III]) are 118.4�, 118.8�, and 122.8�. In these three structures, every

Fe3O cluster connects six ligands, whereas every ligand links two independent

Fe3O clusters, thus forming a three-dimensional (3D) framework containing 1D

channels (Figures 1C–1E). Notably, (Fe[II]/Fe[III])3O(TFBDC)3 presents one type of

round channel along the c axis with an aperture size of ca. 13.2 Å (Figures 1C and

1F), while LIFM-26(Fe[II]/Fe[III]) features two types of different channels functional-

ized by chlorine atoms along the c axis, i.e., one round channel with an aperture

size of ca. 9.0 Å and one elliptic channel with a pore size of ca. 8.2 3 11.5 Å2

(Figures 1D, 1G, and S1). As for LIFM-27(Fe[III]), there is one type of elliptic channel

decorated by chlorine atoms along the c axis with a pore size of about 7.5 3 9.7 Å2

(Figures 1E, 1H, and S2). Additionally, all three frameworks present one type of tetra-

hedral cage (diameter ca. 7.0 Å) constructed from six ligands and five Fe3O clusters

(Figure 1I).

In order to probe the oxidation and spin states of Fe centers, 57Fe Mössbauer spec-

troscopic experiments were carried out for LIFM-26(Fe[II]/Fe[III]), LIFM-27(Fe[III]),

and LIFM-27(Fe[III])-EtOH (Figures 2 and S3–S5; Table S2). The spectra of LIFM-

26(Fe[II]/Fe[III]) can be fitted by one type of doublet and one type of singlet,

revealing two kinds of Fe species with adsorption area ratios of 47.65% and

52.35%, corresponding to the amounts of Fe[II] and Fe[III] centers (0.9:1.0) (Fig-

ure 2A, D1 line). For comparison, only one type of fitting doublet in LIFM-27(Fe

[III]) was observed, confirming the existence of sole Fe[III] species (Figure 2B).

LIFM-27(Fe[III])-EtOH also shows two kinds of Fe species similar to LIFM-26(Fe[II]/

Fe[III]) yet with different adsorption area ratios, implying a variation of Fe[II] and

Fe[III] species (Fe[II]:Fe[III] = 0.5:1.0; Figure S5). As shown in Figure 2A, the D2

line can readily be assigned to high-spin Fe[III] species in LIFM-26(Fe[II]/Fe[III])

with isomer shift d = 0.78 mm/s,34 while the D3 line can be assigned to medium-

spin Fe[II] species with isomer shift d = 0.31 mm/s and quadrupole splitting value
Cell Reports Physical Science 3, 100977, August 17, 2022 3



Figure 1. The schematic construction route of the 3D-MOFs

(A) Trimeric Fe3O cluster.

(B) TFBDC and TCDC ligands.

(C–E) The 3D structures of (C) (Fe[II]/Fe[III])3O(TFBDC)3, (D) LIFM-26(Fe[II]/Fe[III]), and (E) LIFM-27(Fe[III]).

(F–H) The corresponding network topologies of (F) (Fe[II]/Fe[III])3O(TFBDC)3, (G) LIFM-26(Fe[II]/Fe

[III]), and (H) LIFM-27(Fe[III]).

(I) The tetrahedral cage in three isostructural MOFs.
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DEQ = 0.56 mm/s,34 suggesting the existence of a strong p back donation in LIFM-

26(Fe[II]/Fe[III]). For LIFM-27(Fe[III]), the Mössbauer spectra reveal only one type of

high-spin Fe[III] species with isomer shift d = 0.44 mm/s.

Purity and porosity

Powder X-ray diffraction (PXRD) patterns were conducted to confirm the phase purity

of the as-synthesized samples (Figures S8, S9, and S11), and the scanning electron

microscope (SEM) images unveil similar crystal morphology (Figure S7). Thermal

gravimetric analyses (TGAs) indicate comparable thermal stability of two isostructural

MOFs up to 250�C (Figure S6). In contrast to (Fe[II]/Fe[III])3O(TFBDC)3 (Figure S11),

both LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) retain good crystallinity after

activation under high vacuum, indicative of their good framework robustness

(Figures S8 and S9). N2 sorption isotherms at 77 K were collected to evaluate the per-

manent porosity of all three samples. As shown in Figure 3A, LIFM-26(Fe[II]/Fe[III])

(356 cm3 g�1) and LIFM-27(Fe[III]) (310 cm3 g�1) show much higher N2 uptakes than

(Fe[II]/Fe[III])3O(TFBDC)3 (17 cm3 g�1) due to loss of its crystallinity after activation

(Figure S11). Both LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) show typical type I

adsorption isotherms with the Brunauer-Emmett-Teller (BET) surface areas of

1,403 and 1,174 m2 g�1, respectively, and the total pore volumes are 0.55

and 0.48 cm3 g�1, respectively (Figures S12–S14; Table S3). The pore sizes of
4 Cell Reports Physical Science 3, 100977, August 17, 2022



Figure 2. The 57Fe Mössbauer Spectroscopy collected at 298 K

(A) LIFM-26(Fe[II]/Fe[III]).

(B) LIFM-27(Fe[III]).
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LIFM-26(Fe[II]/Fe[III]) are calculated to be 6.8, 8.0, and 10.1 Å by density functional

theory (DFT) analysis, while those of LIFM-27(Fe[III]) are 6.8 and 8.0 Å (Figure S15),

matching well with the corresponding structural analyses. Additionally, we also eval-

uated the porosity of LIFM-27(Fe[III])-EtOH, which exhibits the BET surface area and

pore volumes of 1,330 m2 g�1 and 0.53 cm3 g�1, falling between those of LIFM-

26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) (Figure S16; Table S4).

Adsorption studies

The suitable pore structures of two isostructural Fe-MOFs as described above,

including appropriate pore size and high pore volume as well as polar pore sur-

face, are anticipated to facilitate C2H2 adsorption. To examine the effectiveness

of the variant electronic state of OMSs on the adsorption performance, we

selected C2H2 as a model gas molecule for evaluation. The C2H2 adsorption iso-

therms of both MOFs were measured at 273, 285, and 298 K, respectively

(Figures 3B, 3C, S17, S19–S21, and S23–S24). Evidently, LIFM-26(Fe[II]/Fe[III])

showed much higher C2H2 uptake capacity (181 and 131 cm3 g�1 at 273 and

298 K, 1 bar, respectively) than LIFM-27(Fe[III]) (128 and 97 cm3 g�1 at 273 and

298 K, 1 bar, respectively), suggesting that Fe[II] center with higher electron den-

sity for stronger p back donation in LIFM-26(Fe[II]/Fe[III]) can effectively improve

its adsorption behavior. Specifically, LIFM-26(Fe[II]/Fe[III]) (17.0 cm3 g�1) can

take up more than four times of C2H2 than LIFM-27(Fe[III]) (4.2 cm3 g�1) at low

pressure (3.4 mbar) (Figure 3D). Moreover, the C2H2 uptake capacity of LIFM-

26(Fe[II]/Fe[III]) is much higher than that of (Fe[II]/Fe[III])3O(TFBDC)3 (Figures 3B

and S25), and is also higher than many other known MOFs like Zn-MOF-74

(122 cm3 g�1),31 UTSA-74a (104 cm3 g�1),33 and PCP-33 (122 cm3 g�1),39 but is

lower than some MOFs like FJI-H8-R series (174–229 cm3 g�1),17,24 MIL-160

(191 cm3 g�1),40 SIFSIX-Cu-TPA (185 cm3 g�1),41 and FJU-90a (180 cm3 g�1)

(Table S5).42 To further confirm the effect of low-valent Fe(II) center, the C2H2

adsorption of LIFM-27(Fe[III])-EtOH, in which the amount of Fe[II] center is less

than the prototypical LIFM-26(Fe[II]/Fe[III]), was measured at 298 K. As expected,

the C2H2 uptake by LIFM-27(Fe[III])-EtOH was lower than LIFM-26(Fe[II]/Fe[III]) but

higher than LIFM-27(Fe[III]) (Figures S30–S32). Additionally, the CO2 adsorption

isotherms were performed on both Fe-MOFs. LIFM-26(Fe[II]/Fe[III]) can take up

80 cm3 g�1 CO2 at 298 K and 1 bar, while the uptake capacity of LIFM-27(Fe[III])

is 51 cm3 g�1 under the same condition (Figures 3B, 3C, S18, and S22). These
Cell Reports Physical Science 3, 100977, August 17, 2022 5



Figure 3. Gas adsorption properties of the three MOFs

(A) The N2 adsorption of all the three MOFs at 77 K.

(B and C) The C2H2 and CO2 adsorption isotherms at (B) 273 and (C) 298 K.

(D) The C2H2 adsorption isotherms.

(E and F) The repetitive C2H2 adsorption isotherms of (E) LIFM-26(Fe[II]/Fe[III]) and (F) LIFM-27(Fe[III]).
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results indicate that the gas adsorption performance of the two isostructural

Fe-MOFs can be finely tuned by regulating the electron state of OMSs. Further-

more, the continuous C2H2 and CO2 adsorption isotherms on both Fe-MOFs

were carefully performed, verifying their excellent reusability (Figures 3E, 3F,

and S26–S29).

The isosteric heat (Qst) of C2H2 and CO2 on both MOFs were calculated using

the Clausius-Clapeyron equation based on their adsorption isotherms at three

different temperatures (Figures S17, S18, S21, S22, and S33–S36). For C2H2,

LIFM-26(Fe[II]/Fe[III]) displays higher isosteric heat (53.8 kJ mol�1) than LIFM-

27(Fe[III]) (44.6 kJ mol�1) at near-zero coverage corresponding to the interactions

between gas and Fe center, which further confirms the electronic effect of the

open Fe[II] centers (Figures S37 and S38). Afterward, the subsequent gradual

decrease in isosteric heat for C2H2 on both MOFs along with increased C2H2

loading amount indicate the adsorption saturation of Fe centers. Notably, the

moderate Qst value of C2H2 in LIFM-26(Fe[II]/Fe[III]) is lower than some other re-

ported MOFs with OMSs, such as ATC-Cu (79.1 kJ mol�1),16 Cu@UiO-

66(COOH)2 (74.5 kJ mol�1),43 ZJU-74a (65.0 kJ mol�1),44 and NKMOF-1-Ni

(60.3 kJ mol�1),45 implying the sufficient adsorption reversibility of the adsorbent

owing to the presence of Fe(III) center. For CO2, both MOFs present comparable

isosteric heats, giving values of 37.8 (LIFM-26(Fe[II]/Fe[III])) and 35.8 kJ mol�1

(LIFM-27(Fe[III])) at near-zero coverage (Figures S37 and S38). The higher Qst value

of C2H2 than CO2 suggests a promising potential of C2H2 purification from C2H2/

CO2 gas mixture.
6 Cell Reports Physical Science 3, 100977, August 17, 2022



Figure 4. In situ IR spectra of LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) before and after C2H2 loading

(A) IR spectra of activated LIFM-26(Fe[II]/Fe[III]) (top) and LIFM-27(Fe[III]) (bottom) samples, referenced to pure KBr pellet in vacuum (<20 mTorr base

pressure).

(B) Difference spectra showing the asymmetric stretching band nas of adsorbed C2H2 in LIFM-26(Fe[II]/Fe[III]) (top) and LIFM-27(Fe[III]) (bottom)

samples upon loading at the pressure of �1 bar (top spectrum in each panel) and subsequent evacuation of gas phase under vacuum for �10 and �5

min, respectively. Each is referenced to the spectrum of activated sample.
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Adsorption mechanism

To probe the binding interaction of C2H2 with the frameworks, in situ IR spectros-

copy measurements were performed. The samples of LIFM-26(Fe[II]/Fe[III]) and

LIFM-27(Fe[III]) were first heated under vacuum to remove trapped solvents and

then cooled to room temperature to collect IR spectra of activated samples, as pre-

sented in Figure 4A. The spectra of two samples are dominated by the vibrational

bands associated with the organic linker (Figure S44), which exhibit general similar-

ities. A noticeable difference is that the LIFM-27(Fe[III]) sample shows extra two

bands at �3,634 and 820 cm�1, which are absent in LIFM-26(Fe[II]/Fe[III]). Based

on the well-established studies on Fe-basedMOFs containing a hydroxyl group,46,47

these two bands are attributed to the stretching and deformation modes of OH�,
which terminates one Fe[III] of the trimeric Fe[III]3O cluster for charge balance. In

the neutrally charged (Fe[II]/Fe[III])3O cluster of the LIFM-26(Fe[II]/Fe[III]) sample,

no extra OH� is needed. In addition, careful examination of spectra at 1,600–

1,500 cm�1 reveals that carboxylate asymmetric stretching band vas(COO) in

LIFM-26(Fe[II]/Fe[III]) occurs at a higher frequency (1,590 cm�1) than that in the

LIFM-27(Fe[III]) sample, leading to a larger separation Dv between vas(COO) and

vs(COO).48 This is as expected since the inequivalence of the two C�O bonds con-

nected with Fe[II] and Fe[III], respectively, would further split Dv.49,50 Gas adsorption

measurement was then conducted on these activated samples by loading C2H2 at

�1 bar for �10 min to ensure adsorption saturation, which was followed by subse-

quent desorption via pumping the samples under vacuum. The adsorbed C2H2 is

clearly observed in different IR spectra (Figure 4B), which demonstrate the character-

istic stretching band vas(C2H2) of adsorbed C2H2 at 3,400–3,200 cm�1. A marked dif-

ference is noted for both the position and shape of the vas(C2H2) band between in

LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]). LIFM-27(Fe[III]) displays only a single

band located at 3,237 cm�1, which corresponds to C2H2 adsorbed at the primary

exposed Fe[III] sites, as identified by molecular simulations (Figures 5B and S46;

vide infra). In comparison, LIFM-26(Fe[II]/Fe[III]) shows two distinct bands appearing

at higher frequencies of 3,374 and 3,286 cm�1, pointing to two types of C2H2
Cell Reports Physical Science 3, 100977, August 17, 2022 7



Figure 5. Preferential binding sites

(A and B) The preferential C2H2 binding sites in (A) LIFM-26(Fe[II]/Fe[III]) and (B) LIFM-27(Fe[III]).
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adsorbed on Fe[II] and Fe[III] sites, respectively. It is noteworthy that the 3,374 cm�1

band undergoes an upward shift (blue shift) with respect to the value of the

gas phase C2H2 (3,287 cm�1).51 Such a shift to the higher wavenumber strongly sug-

gests that p back donation occurs between Fe[II] cations and C2H2 in LIFM-26(Fe[II]/

Fe[III]),52 which weakens the C–C bond but stiffens the C–H bond,53 thus resulting in

a raise of C–H stretching frequency. The broadening and asymmetric line shape of

the vas(C2H2) bands in LIFM-26(Fe[II]/Fe[III]) indicate vibrational dynamic coupling

between adsorbed C2H2 molecules, which could account for the occurrence of the

Fe[III]-bound C2H2 band at a higher frequency of 3,286 cm�1 in LIFM-26(Fe[II]/Fe

[III]) compared with that in LIFM-27(Fe[III]) (3,237 cm�1).54

To get further insight into the adsorption mechanism with regard to the mixed-valent

Fe[II]/Fe[III] centers, we implemented molecular simulations. For LIFM-26(Fe[II]/Fe[III]),

C2H2 is mainly located in the channel surrounded by one open Fe[II] center and two

chlorine atoms, in which the strong Fe$$$ChC (2.61 Å) and weak C-Cl$$$H interactions

(3.16 and 3.22 Å) occur between C2H2 and the framework, suggesting strong

C2H2 binding affinity (Figures 5A and S45), whereas the C2H2 binding site in LIFM-

27(Fe[III]) is located in the elliptic channel surrounded by one open Fe[III] center and

two chlorine atoms with weak Fe$$$ ChC (4.37 Å) and C-Cl$$$H interactions (2.72

and 4.09 Å), indicating weaker C2H2 binding affinity compared with LIFM-26(Fe[II]/

Fe[III]) (Figures 5B and S46). The calculated C2H2 binding energy for LIFM-26(Fe[II]/

Fe[III]) is 49.7 kJ mol�1, which is higher than LIFM-27(Fe[III]) (45.6 kJ mol�1) (Table

S6), manifesting the stronger interaction between C2H2 and LIFM-26(Fe[II]/Fe[III]). In

comparison, both LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) present weaker interac-

tions toward CO2. The observed CO2 binding site in LIFM-26(Fe[II]/Fe[III]) is

mainly the Fe$$$O-C interaction with a distance of 2.13 Å, which is similar to that

of LIFM-27(Fe[III]) (Fe$$$O-C distance is 2.17 Å) (Figures S47–S49). The CO2 binding

energy for LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) are calculated to be 38.5 and

37.6 kJmol�1, respectively (Table S6), which are weaker than those of C2H2, confirming

the feasible C2H2/CO2-separation performance.
IAST adsorption selectivity and dynamic breakthrough

To evaluate the C2H2/CO2-separation ability, the IAST55 calculation was conducted

on the basis of the composition of a 50:50 C2H2/CO2 mixture (Figures S39–S42). As

shown in Figures 6A and S43, LIFM-26(Fe[II]/Fe[III]) gives much higher C2H2/CO2

selectivity (56.1 at 0.01 bar) than LIFM-27(Fe[III]) (14.3 at 0.01 bar) under low pres-

sure, which can be attributed to the stronger Fe[II]–C2H2 binding affinity as a result
8 Cell Reports Physical Science 3, 100977, August 17, 2022



Figure 6. IAST calculated selectivity and dynamic breakthrough

(A) IAST adsorption selectivity of C2H2/CO2 (v/v, 50:50) at 298 K.

(B) IAST calculated C2H2 and CO2 uptake capacity for equimolar C2H2/CO2 mixtures.

(C) The experimental dynamic breakthrough measurements of LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) for C2H2/CO2 mixture at 298 K and 1 bar.

(D) The cycling dynamic breakthrough measurements of LIFM-26(Fe[II]/Fe[III]) for C2H2/CO2 mixture at 298 K and 1 bar.
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of the increased electron density at the Fe[II] center. Subsequently, the C2H2/CO2

selectivity for both MOFs gradually decreases as a function of the increased

pressure due to the adsorption saturation of the Fe centers. The final C2H2/CO2 se-

lectivities for LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) are 4.8 and 5.5 at 298 K

and 1 bar, respectively, which are comparable with many reported MOFs, such as

SIFSIX-Cu-TPA (5.3),41 SNNU-45 (4.5),56 TIFSIX-2-Cu-i (6.5),28 FJU-90 (4.3),42

UTSA-222 (4.0),57 JNU-1 (3.6),18 and Zn-MOF-74 (2.8).31 Additionally, the C2H2

uptake capacity was calculated based on the IAST method. Compared with LIFM-

27(Fe[III]) (4.7 cm3 g�1 at 0.01 bar), LIFM-26(Fe[II]/Fe[III]) exhibits enhanced C2H2-

capture performance, especially at low pressure (20.4 cm3 g�1 at 0.01 bar) (Fig-

ure 6B). More importantly, the C2H2 uptake capacity for both MOFs is remarkably

higher than their CO2 adsorption, implying potential C2H2-separation ability from

C2H2/CO2 mixture (Figure 6B).

Prompted by the outstanding C2H2 uptake capacity and C2H2/CO2 adsorption

selectivity, the simulated transient breakthrough experiments were carried out
Cell Reports Physical Science 3, 100977, August 17, 2022 9
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according to the documented methodology.58 For both LIFM-26(Fe[II]/Fe[III]) and

LIFM-27(Fe[III]), CO2 elutes first, and then C2H2 breaks through after some time,

demonstrating the adequate capacity for the demanding C2H2/CO2 separation

(Figures S52 and S53). The C2H2 capture productivity calculated on the basis of

the simulated breakthrough curves gives rise to the values of 88.9 (LIFM-26(Fe[II]/

Fe[III])) and 76.6 (LIFM-27(Fe[III])) cm3 g�1, unveiling the better C2H2/CO2-

separation performance of LIFM-26(Fe[II]/Fe[III]). It is noticeable that the C2H2 pro-

ductivity for LIFM-26(Fe[II]/Fe[III]) is slightly lower than FJU-90 (114.2 cm3 g�1)42

yet higher than other reported MOFs including FJU-22a (83.1 cm3 g�1),59 ZUL-60a

(80.6 cm3 g�1),60 UTSA-74a (79.7 cm3 g�1),33 Zn-MOF-74 (76.6 cm3 g�1),31 and

PCP-33 (75.7 cm3 g�1).39

To further assess the practical C2H2/CO2-separation performance by both LIFM-26(Fe

[II]/Fe[III]) and LIFM-27(Fe[III]), dynamic fixed-bed breakthrough experiments were

conducted through a stainless-steel column under ambient condition, in which the

equimolar C2H2/CO2 mixture flowed over the packed column with a flow rate of

1.0 mL min�1. As depicted in Figure 6C, both Fe-MOFs present excellent C2H2-sepa-

ration performance from C2H2/CO2 mixture. For LIFM-26(Fe[II]/Fe[III]), CO2 undoubt-

edly elutes first and then quickly reaches a pure grade without detectable C2H2, while

C2H2 remains in the packed column for a remarkable time until it is saturated in LIFM-

26(Fe[II]/Fe[III]). As expected, LIFM-27(Fe[III]) exhibits similar C2H2/CO2 dynamic

breakthrough behavior but with a shorter C2H2 breakthrough time. Based on the

experimental breakthrough curves, LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) present

comparable C2H2/CO2 selectivity with values of 1.6 and 1.7, respectively. The calcu-

lated C2H2-capture productivity for LIFM-26(Fe[II]/Fe[III]) based on the experimental

breakthrough curve is estimated to be 60.0 cm3 g�1, whereas the value for LIFM-

27(Fe[III]) is 53.7 cm3 g�1. In principle, ideal adsorbents should present good recycla-

bility in practical industrial applications. Therefore, the continuous dynamic break-

through experiments were performed under the above conditions. The results indicate

that both Fe-MOFs maintain almost the same retaining time and capture productivity

in three continuous C2H2/CO2 dynamic breakthrough experiments (Figures 6D, S50,

and S51), demonstrating their good reusability. The PXRD patterns after the repetitive

experiments also confirm the crystallinity is retained well (Figures S54 and S55). Taken

together, these results clearly demonstrate that the Fe-MOFs have successfully

achieved a combination of high C2H2 uptake capacity, moderate-high C2H2/CO2

selectivity, and sufficient reversibility by rationally regulating the electronic state of

the open-metal centers.

In summary, a metal electronic-state manipulation strategy has been successfully

applied to constructing a pair of microporous isostructural Fe-MOFs featuring open

Fe centers with different electron densities for efficient C2H2/CO2 separation. Notably,

the isostructural LIFM-26(Fe[II]/Fe[III]) and LIFM-27(Fe[III]) can be interconverted, and

the electronic state of Fe centers can be finely tuned by simply changing the oxidation

conditions depending on the solvents and reaction time, thus facilitating understand-

ing of the inherent relationship between the metal electronic state and C2H2 selective

adsorption. Compared with LIFM-27(Fe[III]), LIFM-26(Fe[II]/Fe[III]) presents remarkably

higher C2H2 uptake capacity while retaining moderate-high C2H2/CO2 selectivity,

which is well supported by the simulated and experimental dynamic breakthrough ex-

periments. In situ IR and molecular calculations manifest that LIFM-26(Fe[II]/Fe[III]) ex-

hibits enhanced binding affinity toward C2H2 than LIFM-27(Fe[III]) due to the increased

electron density at themetal site, resulting in a strongerp back donation. Significantly,

this work provides an effective guideline to realize the challenging C2H2/CO2 separa-

tion by rationally manipulating the electronic state of OMSs in MOF pore spaces.
10 Cell Reports Physical Science 3, 100977, August 17, 2022
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MATERIALS AND METHODS

See the supplemental experimental procedures for full details of synthesis, charac-

terization, modeling and analysis, and adsorption and breakthrough measurements.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Cheng-Yong Su (cesscy@mail.sysu.edu.cn), and Sheng-

qian Ma (shengqian.ma@unt.edu).

Materials availability

All materials generated in this study are available from the lead contact without

restriction.

Data and code availability

The X-ray crystallographic coordinates for LIFM-27(Fe[III]) have been deposited at

the Cambridge Crystallographic Data Centre (CCDC) under CCDC: 2114493. These

data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/

data_request/cif. All other data are available from the lead contact upon request.
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