10 research outputs found

    Serum amyloid A is a positive acute phase protein in Russian sturgeon challenged with Aeromonas hydrophila

    Get PDF
    The immune system of sturgeons, one of the most ancient and economically valuable fsh worldwide, is poorly understood. The lack of molecular tools and data about infection biomarkers hinders the possibility to monitor sturgeon health during farming and detect infection outbreaks. To tackle this issue, we mined publicly available transcriptomic datasets and identifed putative positive acute-phase proteins (APPs) of Russian sturgeons that could be induced by a bacterial infection and monitored using non-invasive methods. Teleost literature compelled us to focus on fve promising candidates: hepcidin, a warm acclimation associated hemopexin, intelectin, serum amyloid A protein (SAA) and serotransferrin. Among them, SAA was the most upregulated protein at the mRNA level in the liver of sturgeons challenged with heat-inactivated or live Aeromonas hydrophila. To assess whether this upregulation yielded increasing SAA levels in circulation, we developed an in-house ELISA to quantify SAA levels in sturgeon serum. Circulating SAA rose upon bacterial challenge and positively correlated with hepatic saa expression. This is the frst time serum SAA has been quantifed in an Actinopterygii fsh. Since APPs vary across diferent fsh species, our work sheds light on sturgeon acute-phase response, revealing that SAA is a positive APP with potential value as infection biomarker

    A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes

    Get PDF
    Nitro-fatty acids (NO2-FA) are electrophilic lipid mediators derived from unsaturated fatty acid nitration. These species are produced endogenously by metabolic and inflammatory reactions and mediate anti-oxidative and anti-inflammatory responses. NO2-FA have been postulated as partial agonists of the Peroxisome Proliferator-Activated Receptor gamma (PPARγ), which is predominantly expressed in adipocytes and myeloid cells. Herein, we explored molecular and cellular events associated with PPARγ activation by NO2-FA in monocytes and macrophages. NO2-FA induced the expression of two PPARγ reporter genes, Fatty Acid Binding Protein 4 (FABP4) and the scavenger receptor CD36, at early stages of monocyte differentiation into macrophages. These responses were inhibited by the specific PPARγ inhibitor GW9662. Attenuated NO2-FA effects on PPARγ signaling were observed once cells were differentiated into macrophages, with a significant but lower FABP4 upregulation, and no induction of CD36. Using in vitro and in silico approaches, we demonstrated that NO2-FA bind to FABP4. Furthermore, the inhibition of monocyte FA binding by FABP4 diminished NO2-FA-induced upregulation of reporter genes that are transcriptionally regulated by PPARγ, Keap1/Nrf2 and HSF1, indicating that FABP4 inhibition mitigates NO2-FA signaling actions. Overall, our results affirm that NO2-FA activate PPARγ in monocytes and upregulate FABP4 expression, thus promoting a positive amplification loop for the downstream signaling actions of this mediator.Fil: Lamas Bervejillo, M.. Universidad de la República; UruguayFil: Bonanata, Julieta. Universidad de la República; UruguayFil: Franchini, Gisela Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Richeri, A.. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Marqués, J.M.. Universidad de la República; UruguayFil: Freeman, B.A.. University of Pittsburgh; Estados UnidosFil: Schopfer, Francisco Jose. University of Pittsburgh; Estados UnidosFil: Coitiño, E.L.. Universidad de la República; UruguayFil: Córsico, Betina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Rubbo, H.. Universidad de la República; UruguayFil: Ferreira, A.M.. Universidad de la República; Urugua

    A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes

    Get PDF
    Nitro-fatty acids (NO2-FA) are electrophilic lipid mediators derived from unsaturated fatty acid nitration. These species are produced endogenously by metabolic and inflammatory reactions and mediate anti-oxidative and anti-inflammatory responses. NO2-FA have been postulated as partial agonists of the Peroxisome Proliferator- Activated Receptor gamma (PPARγ), which is predominantly expressed in adipocytes and myeloid cells. Herein, we explored molecular and cellular events associated with PPARγ activation by NO2-FA in monocytes and macrophages. NO2-FA induced the expression of two PPARγ reporter genes, Fatty Acid Binding Protein 4 (FABP4) and the scavenger receptor CD36, at early stages of monocyte differentiation into macrophages. These responses were inhibited by the specific PPARγ inhibitor GW9662. Attenuated NO2-FA effects on PPARγ sig- naling were observed once cells were differentiated into macrophages, with a significant but lower FABP4 up- regulation, and no induction of CD36. Using in vitro and in silico approaches, we demonstrated that NO2-FA bind to FABP4. Furthermore, the inhibition of monocyte FA binding by FABP4 diminished NO2-FA-induced upre- gulation of reporter genes that are transcriptionally regulated by PPARγ, Keap1/Nrf2 and HSF1, indicating that FABP4 inhibition mitigates NO2-FA signaling actions. Overall, our results affirm that NO2-FA activate PPARγ in monocytes and upregulate FABP4 expression, thus promoting a positive amplification loop for the downstream signaling actions of this mediator
    corecore