186 research outputs found

    Ion-ion correlation and charge reversal at titrating solid interfaces

    Full text link
    Confronting grand canonical titration Monte Carlo simulations (MC) with recently published titration and charge reversal (CR) experiments on silica surfaces by Dove et al. and van der Heyden it et al, we show that ion-ion correlations quantitatively explain why divalent counterions strongly promote surface charge which, in turn, eventually causes a charge reversal (CR). Titration and CR results from simulations and experiments are in excellent agreement without any fitting parameters. This is the first unambiguous evidence that ion-ion correlations are instrumental in the creation of highly charged surfaces and responsible for their CR. Finally, we show that charge correlations result in "anomalous" charge regulation in strongly coupled conditions in qualitative desagreement with its classical treatment.Comment: 4 pages, 4 figures, submitted to PR

    Hiding in Plain View: Colloidal Self-Assembly from Polydisperse Populations

    Get PDF
    We report small-angle x-ray scattering experiments on aqueous dispersions of colloidal silica with a broad monomodal size distribution (polydispersity, 14%; size, 8 nm). Over a range of volume fractions, the silica particles segregate to build first one, then two distinct sets of colloidal crystals. These dispersions thus demonstrate fractional crystallization and multiple-phase (bcc, Laves AB2, liquid) coexistence. Their remarkable ability to build complex crystal structures from a polydisperse population originates from the intermediate-range nature of interparticle forces, and it suggests routes for designing self-assembling colloidal crystals from the bottom up

    Assessment of electrophoresis and electroosmosis in construction materials: effect of enhancing electrolytes and heavy metals contamination

    Full text link
    Electrokinetic effects are those that take place by application of an electric field to porous materials, with the zeta potential as the key parameter. Specifically, in the case of contaminated construction materials, the generation of an electroosmotic flux, with the corresponding dragging due to water transport, is a crucial mechanism to succeed in the treatment of decontamination. Therefore, it is of great interest trying to optimize the treatment by the addition of specific electrolytes enhancing the electrokinetic phenomena. Most of the data of zeta potential found in literature for construction materials are based in micro-electrophoresis measurements, which are quite far of the real conditions of application of the remediation treatments. In this paper, electrophoretic and electroosmotic experiments, with monolithic and powdered material respectively, have been carried out for mortar, brick and granite clean and contaminated with Cs, Sr, Co, Cd, Cu and Pb. The electrolytes tested have been distilled water (DW), Na2–EDTA, oxalic acid, acetic acid and citric acid. The zeta potential values have been determined through the two different techniques and the results compared and critically analysed

    Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling

    Get PDF
    Electrophoretic mobilities (EPM) of negatively charged latex spheres were measured as a function of salt type and salt concentration. The measured values of EPM were analyzed using a standard electrokinetic model that includes double layer relaxation and the Poisson–Boltzmann model of diffuse double layer. Calculated values of EPM were in good agreement with experimental data taken in simple 1:1 (KCl) and 1:2 (Na2SO4) electrolyte solutions without using any fit parameters. For 2:1 electrolytes (CaCl2 and MgCl2), however, the magnitude of EPM calculated by the model was higher than the measured values of EPM at higher electrolyte concentrations. The difference between measured and calculated EPM was reduced by assuming the distance of slipping plane x s = 0.25 nm or by assuming the decrease of the magnitude of surface charge density from −0.07 to −0.025 C/m2. These are probably due to the accumulation of divalent counterions in the vicinity of a particle’s surface

    Packing polydisperse colloids into crystals: when charge-dispersity matters

    Get PDF
    Monte Carlo simulations, fully constrained by experimental parameters, are found to agree well with a measured phase diagram of aqueous dispersions of nanoparticles with a moderate size polydispersity over a broad range of salt concentrations and volume fractions. Upon increasing volume fraction the colloids freeze first into coexisting compact solids then into a body centered cubic phase (bcc) before they melt into a glass forming liquid. The surprising stability of the bcc solid at high volume fractions and salt concentrations is explained by the interaction (charge) polydispersity and vibrational entropy

    Mechanisms and kinetics of C-S-H nucleation approaching the spinodal line: Insights into the role of organics additives

    Full text link
    Wet chemistry C-S-H precipitation experiments were performed under controlled conditions of solution supersaturation in the presence and absence of gluconate and three hexitol molecules. Characterization of the precipitates with SAXS and cryo-TEM experiments confirmed the presence of a multi-step nucleation pathway. Induction times for the formation of the amorphous C-S-H spheroids were determined from light transmittance. Analysis of those data with the classical nucleation theory revealed a significant increase of the kinetic prefactor in the same order as the complexation constants of calcium and silicate with each of the organics. Finally, two distinct precipitation regimes of the C-S-H amorphous precursor were identified: i) a nucleation regime at low saturation indexes (SI) and ii) a spinodal nucleation regime at high SI where the free energy barrier to the phase transition is found to be of the order of the kinetic energy or less.Comment: Accepted in Cement and Concrete Research. 30 pages plus supplementary materials. arXiv admin note: substantial text overlap with arXiv:2111.0274

    Composition-solubility-structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H)

    Get PDF
    The interplay between the solubility, structure and chemical composition of calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H) equilibrated at 50 °C is investigated in this paper. The tobermorite-like C-(N,K-)A-S-H products are more crystalline in the presence of alkalis, and generally have larger basal spacings at lower Ca/Si ratios. Both Na and K are incorporated into the interlayer space of the C-(N,K-)A-S-H phases, with more alkali uptake observed at higher alkali and lower Ca content. No relationship between Al and alkali uptake is identified at the Al concentrations investigated (Al/Si ≤ 0.1). More stable C-(N,K-)A-S-H is formed at higher alkali content, but this factor is only significant in some samples with Ca/Si ratios ≤1. Shorter chain lengths are formed at higher alkali and Ca content, and cross-linking between (alumino)silicate chains in the tobermorite-like structure is greatly promoted by increasing alkali and Al concentrations. The calculated solubility products do not depend greatly on the mean chain length in C-(N,K-)A-S-H at a constant Ca/(Al + Si) ratio, or the Al/Si ratio in C-(N,K-)A-S-H. These results are important for understanding the chemical stability of C-(N,K-)A-S-H, which is a key phase formed in the majority of cements and concretes used worldwide

    Solid-state nuclear magnetic resonance spectroscopy of cements

    Get PDF
    Cement is the ubiquitous material upon which modern civilisation is built, providing long-term strength, impermeability and durability for housing and infrastructure. The fundamental chemical interactions which control the structure and performance of cements have been the subject of intense research for decades, but the complex, crystallographically disordered nature of the key phases which form in hardened cements has raised difficulty in obtaining detailed information about local structure, reaction mechanisms and kinetics. Solid-state nuclear magnetic resonance (SS NMR)spectroscopy can resolve key atomic structural details within these materials and has emerged as a crucial tool in characterising cement structure and properties. This review provides a comprehensive overview of the application of multinuclear SS NMR spectroscopy to understand composition–structure–property relationships in cements. This includes anhydrous and hydrated phases in Portland cement, calcium aluminate cements, calcium sulfoaluminate cements, magnesia-based cements, alkali-activated and geopolymer cements and synthetic model systems. Advanced and multidimensional experiments probe 1 H, 13 C, 17 O, 19 F, 23 Na, 25 Mg, 27 Al, 29 Si, 31 P, 33 S, 35 Cl, 39 K and 43 Ca nuclei, to study atomic structure, phase evolution, nanostructural development, reaction mechanisms and kinetics. Thus, the mechanisms controlling the physical properties of cements can now be resolved and understood at an unprecedented and essential level of detail

    Factors influencing the cohesion forces

    No full text
    corecore