199 research outputs found

    Effects of high versus low flux membranes on O2 saturation in hemodialysis patients

    Get PDF
    Background: Several studies have been carried out to evaluate the effects of dialysis on O2 saturation. While the dialysis procedure may lead to hypoxia under different circumstances, there are few studies available on the effects of membrane type on O2 saturation in these patients. objectives: This study was to appraise the effects of high and low flux membrane on pulse oxymetery in dialysis patients. Patients and Methods: In a cross-sectional evaluation, 43 hemodialysis patients without pulmonary disease were enrolled. Of this group, dialysis was performed by low and high flux membranes, and pulse oxymetery was applied before and after the procedures. Results: Mean age of the patients was 56.34 years. Of these patients, 23 (53.5) and 20 (46.5) were women and men, respectively. Type of membrane (high flux vs. low flux) did not show any significant effect on pulse oxymetery results (P > 0.05). Conclusions: Due to the lack of a significant difference in pulse oxymetery and creation of hypoxia between two types of membranes in hemodialysis patients, as well as the high cost of high flux membrane as compared to the low flux membrane, we do not suggest the use of high flux membrane in dialysis. © 2013, Kowsar Corp.; Published by Kowsar Corp

    Renal artery stenosis-when to screen, what to stent?

    Get PDF
    Renal artery stensosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Evidence from large clinical trials has led clinicians away from recommending interventional revascularisation towards aggressive medical management. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary oedema, rapidly declining renal function and severe resistant hypertension. The potential benefits in terms of improving hard cardiovascular outcomes may outweigh the risks of intervention in this group, and further research is needed

    Back to Basics: Pitting Edema and the Optimization of Hypertension Treatment in Incident Peritoneal Dialysis Patients (BRAZPD)

    Get PDF
    Systemic arterial hypertension is an important risk factor for cardiovascular disease that is frequently observed in populations with declining renal function. Initiation of renal replacement therapy at least partially decreases signs of fluid overload; however, high blood pressure levels persist in the majority of patients after dialysis initiation. Hypervolemia due to water retention predisposes peritoneal dialysis (PD) patients to hypertension and can clinically manifest in several forms, including peripheral edema. The approaches to detect edema, which include methods such as bioimpedance, inferior vena cava diameter and biomarkers, are not always available to physicians worldwide. For clinical examinations, the presence of pitting located in the lower extremities and/or over the sacrum to diagnose the presence of peripheral edema in their patients are frequently utulized. We evaluated the impact of edema on the control of blood pressure of incident PD patients during the first year of dialysis treatment. Patients were recruited from 114 Brazilian dialysis centers that were participating in the BRAZPD study for a total of 1089 incident patients. Peripheral edema was diagnosed by the presence of pitting after finger pressure was applied to the edematous area. Patients were divided into 2 groups: those with and without edema according to the monthly medical evaluation. Blood arterial pressure, body mass index, the number of antihypertensive drugs and comorbidities were analyzed. We observed an initial BP reduction in the first five months and a stabilization of blood pressure levels from five to twelve months. The edematous group exhibited higher blood pressure levels than the group without edema during the follow-up. The results strongly indicate that the presence of a simple and easily detectable clinical sign of peripheral edema is a very relevant tool that could be used to re-evaluate not only the patient's clinical hypertensive status but also the PD prescription and patient compliance

    The Role of Regulatory T Cells in Cancer

    Get PDF
    There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA

    Dysregulation of neuronal iron homeostasis as an alternative unifying effect of mutations causing familial Alzheimer's disease

    Get PDF
    The overwhelming majority of dominant mutations causing early onset familial Alzheimer's disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An effect-in-common of these mutations is alteration of production of the APP-derived peptide, amyloid ß (Aß). It is this key fact that underlies the authority of the Amyloid Hypothesis that has informed Alzheimer's disease research for over two decades. Any challenge to this authority must offer an alternative explanation for the relationship between the PSEN genes and APP. In this paper, we explore one possible alternative relationship - the dysregulation of cellular iron homeostasis as a common effect of EOfAD mutations in these genes. This idea is attractive since it provides clear connections between EOfAD mutations and major characteristics of Alzheimer's disease such as dysfunctional mitochondria, vascular risk factors/hypoxia, energy metabolism, and inflammation. We combine our ideas with observations by others to describe a "Stress Threshold Change of State" model of Alzheimer's disease that may begin to explain the existence of both EOfAD and late onset sporadic (LOsAD) forms of the disease. Directing research to investigate the role of dysregulation of iron homeostasis in EOfAD may be a profitable way forward in our struggle to understand this form of dementia

    The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

    Get PDF
    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF
    An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma ÎČ. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-AlfvĂ©n turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts
    • 

    corecore