67 research outputs found

    Transitional Care for Patients with Congenital Colorectal Diseases: An EUPSA Network Office, ERNICA, and eUROGEN Joint Venture

    Get PDF
    Background: Transition of care (TOC; from childhood into adulthood) of patients with anorectal malformations (ARM) and Hirschsprung disease (HD) ensures continuation of care for these patients. The aim of this international study was to assess the current status of TOC and adult care (AC) programs for patients with ARM and HD. Methods: A survey was developed by members of EUPSA, ERN eUROGEN, and ERNICA, including patient representatives (ePAGs), comprising of four domains: general information, general questions about transition to adulthood, and disease-specific questions regarding TOC and AC programs. Recruitment of centres was done by the ERNs and EUPSA, using mailing lists and social media accounts. Only descriptive statistics were reported. Results: In total, 82 centres from 21 different countries entered the survey. Approximately half of them were ERN network members. Seventy-two centres (87.8%) had a self-reported area of expertise for both ARM and HD. Specific TOC programs were installed in 44% of the centres and AC programs in 31% of these centres. When comparing centres, wide variation was observed in the content of the programs. Conclusion: Despite the awareness of the importance of TOC and AC programs, these programs were installed in less than 50% of the participating centres. Various transition and AC programs were applied, with considerable heterogeneity in implementation, content and responsible caregivers involved. Sharing best practice examples and taking into account local and National Health Care Programs might lead to a better continuation of care in the future. Level of Evidence: III

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Modification of χc1(3872) and ψ(2S) production in pPb collisions at √sNN = 8.16 TeV

    Get PDF
    The LHCb Collaboration measures production of the exotic hadron χc1(3872) in proton-nucleus collisions for the first time. Comparison with the charmonium state ψ(2S) suggests that the exotic χc1(3872) experiences different dynamics in the nuclear medium than conventional hadrons, and comparison with data from proton-proton collisions indicates that the presence of the nucleus may modify χc1(3872) production rates. This is the first measurement of the nuclear modification factor of an exotic hadron

    Enhanced production of Λb0 baryons in high-multiplicity pp collisions at √s = 13 TeV

    Get PDF
    The production rate of Λ 0 b baryons relative to B 0 mesons in p p collisions at a center-of-mass energy √ s = 13     TeV is measured by the LHCb experiment. The ratio of Λ 0 b to B 0 production cross sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e + e − collisions, and increases by a factor of ∼ 2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λ 0 b to B 0 cross sections is higher than what is measured in e + e − collisions, but converges with the e + e − ratio as the momentum increases. These results imply that the evolution of heavy b quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with several models and implications for the mechanisms enforcing quark confinement are discussed

    Amplitude analysis of the B0→K*0μ+μ− decay

    Get PDF
    An amplitude analysis of the B 0 → K * 0 μ + μ − decay is presented using a dataset corresponding to an integrated luminosity of 4.7     fb − 1 of p p collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q 2 -unbinned amplitude analysis, where q 2 is the μ + μ − invariant mass squared. Long-distance contributions, which originate from nonfactorizable QCD processes, are systematically investigated, and the most accurate assessment to date of their impact on the physical observables is obtained. The pattern of measured corrections to the short-distance couplings is found to be consistent with previous analyses of b - to s -quark transitions, with the largest discrepancy from the standard model predictions found to be at the level of 1.8 standard deviations. The global significance of the observed differences in the decay is 1.4 standard deviations

    Fraction of χc decays in prompt J/ψ production measured in pPb collisions at √sNN = 8.16 TeV

    Get PDF
    The fraction of χ c 1 and χ c 2 decays in the prompt J / ψ yield, F χ c → J / ψ = σ χ c → J / ψ / σ J / ψ , is measured by the LHCb detector in p Pb collisions at √ s NN = 8.16     TeV . The study covers the forward ( 1.5 < y ∗ < 4.0 ) and backward ( − 5.0 < y ∗ < − 2.5 ) rapidity regions, where y ∗ is the J / ψ rapidity in the nucleon-nucleon center-of-mass system. Forward and backward rapidity samples correspond to integrated luminosities of 13.6 ± 0.3 and 20.8 ± 0.5     nb − 1 , respectively. The result is presented as a function of the J / ψ transverse momentum p T , J / ψ in the range 1 < p T , J / ψ < 20     GeV / c . The F χ c → J / ψ fraction at forward rapidity is compatible with the LHCb measurement performed in p p collisions at √ s = 7     TeV , whereas the result at backward rapidity is 2.4 σ larger than in the forward region for 1 < p T , J / ψ < 3     GeV / c . The increase of F χ c → J / ψ at low p T , J / ψ at backward rapidity is compatible with the suppression of the ψ ( 2 S ) contribution to the prompt J / ψ yield. The lack of in-medium dissociation of χ c states observed in this study sets an upper limit of 180 MeV on the free energy available in these p Pb collisions to dissociate or inhibit charmonium state formation

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p
    corecore