263 research outputs found

    An Exploratory Analysis of the “Was It Worth It?” Questionnaire as a Novel Metric to Capture Patient Perceptions of Cancer Treatment

    Get PDF
    Objectives: Asking “Was it worth it?” (WIWI) potentially captures the patient perception of a treatment's benefit weighed against its harms. This exploratory analysis evaluates the WIWI questionnaire as a metric of patients’ perspectives on the worthwhileness of cancer treatment. Methods: A 3-item WIWI questionnaire was assessed at end of treatment in patients with cancer on the COMET-2 trial (NCT01522443). WIWI items were evaluated to determine their association with quality of life (QOL), treatment duration, end-of-treatment reason, patient-reported adverse events (AEs), and disease response. Results: A total of 65 patients completed the questionnaire; 40 (62%), 16 (25%), and 9 (14%) patients replied yes, uncertain, and no to “Was it worthwhile for you to receive the cancer treatment given in this study?” (item 1), respectively; 39 (60%), 12 (18%), and 14 (22%) to “If you had to do it over again, would you choose to have this cancer treatment?”; and 40 (62%), 14 (22%), and 11 (17%) to “Would you recommend this cancer treatment to others?” Patients responding yes to item 1 remained on treatment longer than those responding uncertain or no (mean 23.0 vs 11.3 weeks, P<.001). Patients responding uncertain/no to item 1 discontinued treatment because of AEs more frequently than those responding yes (36% vs 7.5%, P=.004) and demonstrated meaningful decline in QOL from baseline (−2.5 vs −0.2 mean change, P<.001). Associations between WIWI responses and most patient-reported AEs or treatment efficacy did not reach statistical significance. Conclusions: Patients who responded affirmatively on WIWI items remained on therapy longer, were less likely to stop treatment because of AEs, and demonstrated superior QOL. The WIWI may inform clinical practice, oncology research, and value frameworks

    Evaluating Treatment Tolerability Using the Toxicity Index With Patient-Reported Outcomes Data

    Get PDF
    Context: Summarizing longitudinal symptomatic adverse events during clinical trials is necessary for understanding treatment tolerability. The Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) provides insight for capturing treatment tolerability within trials. Tolerability summary measures, such as the maximum score, are often used to communicate the potential negative symptoms both in the medical literature and directly to patients. Commonly, the proportions of present and severe symptomatic adverse events are used and reported between treatment arms among adverse event types. The toxicity index is also a summary measure previously applied to clinician-reported CTCAE data. Objectives: Apply the toxicity index to PRO-CTCAE data from the COMET-2 trial alongside the maximum score, then present and discuss considerations for using the toxicity index as a summary measure for communicating tolerability to patients and clinicians. Methods: Proportions of maximum PRO-CTCAE severity levels and median toxicity index were computed by arm using all trial data and adjusting for baseline symptoms. Results: Group-wise statistical differences were similar whether using severity level proportions or the toxicity index. The impact of adjusting for baseline symptoms was equivalently seen when comparing arms using severity rates or the toxicity index. Conclusion: The toxicity index is a useful method when ranking patients from those with the least to most symptomatic adverse event burden. This study showed the toxicity index can be applied to PRO-CTCAE data. Though as a tolerability summary measure, further study is needed to provide a clear clinical or patient-facing interpretation of the toxicity index

    Missing data strategies for the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) in Alliance A091105 and COMET-2

    Get PDF
    Purpose: Missing scores complicate analysis of the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) because patients with and without missing scores may systematically differ. We focus on optimal analysis methods for incomplete PRO-CTCAE items, with application to two randomized, double-blind, placebo-controlled, phase III trials. Methods: In Alliance A091105 and COMET-2, patients completed PRO-CTCAE items before randomization and several times post-randomization (N = 64 and 107, respectively). For each trial, we conducted between-arm comparisons on the PRO-CTCAE via complete-case two-sample t-tests, mixed modeling with contrast, and multiple imputation followed by two-sample t-tests. Because interest lies in whether CTCAE grades can inform missing PRO-CTCAE scores, we performed multiple imputation with and without CTCAE grades as auxiliary variables to assess the added benefit of including them in the imputation model relative to only including PRO-CTCAE scores across all cycles. Results: PRO-CTCAE completion rates ranged from 100.0 to 71.4% and 100.0 to 77.1% across time in A091105 and COMET-2, respectively. In both trials, mixed modeling and multiple imputation provided the most similar estimates of the average treatment effects. Including CTCAE grades in the imputation model did not consistently narrow confidence intervals of the average treatment effects because correlations for the same PRO-CTCAE item between different cycles were generally stronger than correlations between each PRO-CTCAE item and its corresponding CTCAE grade at the same cycle. Conclusion: For between-arm comparisons, mixed modeling and multiple imputation are informative techniques for handling missing PRO-CTCAE scores. CTCAE grades do not provide added benefit for informing missing PRO-CTCAE scores. ClinicalTrials.gov Identifiers: NCT02066181 (Alliance A091105); NCT01522443 (COMET-2)

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
    corecore