52 research outputs found

    The functional anatomy of semantic retrieval is influenced by gender, menstrual cycle, and sex hormones

    Get PDF
    This study examines the neurobiology of semantic retrieval and describes the influence of gender, menstrual cycle, and sex hormones on semantic networks. Healthy right-handed subjects (12 men, 12 women) were investigated with 3T-fMRI during synonym generation. Behavioral performance and sex hormone levels were assessed. Women were examined during the early follicular and midluteal cycle phase. The activation pattern in all groups involved left frontal and temporal as well as bilateral medial frontal, cingulate, occipital, basal ganglia, and cerebellar regions. Men showed greater left frontal activation than women in both menstrual cycle phases. Women yielded high correlations of left prefrontal activation with estradiol in the midluteal phase and with progesterone in both phases. Testosterone levels correlated highly with left prefrontal activation in all three groups. In all, we describe a cerebral network involved in semantic processing and demonstrate that it is significantly affected by gender and sex steroid hormones

    High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide

    Get PDF
    Light-activated tooth bleaching with a high hydrogen peroxide (HP; H(2)O(2)) concentration has risks and the actual role of the light source is doubtful. The use of conventional light might result in an increase in the temperature and cause thermal damage to the health of the tooth tissue. OBJECTIVE: This study investigated the efficacy of tooth bleaching using non-thermal atmospheric pressure plasma (NAPP) with 15% carbamide peroxide (CP; CH(6)N(2)O(3)) including 5.4% HP, as compared with conventional light sources. MATERIAL AND METHODS: Forty human teeth were randomly divided into four groups: Group I (CP+NAPP), Group II (CP+plasma arc lamp; PAC), Group III (CP+diode laser), and Group IV (CP alone). Color changes (ΔE ) of the tooth and tooth surface temperatures were measured. Data were evaluated by one-way analysis of variance (ANOVA) and post-hoc Tukey's tests. RESULTS: Group I showed the highest bleaching efficacy, with a ΔE value of 1.92-, 2.61 and 2.97-fold greater than those of Groups II, III and IV, respectively (P<0.05). The tooth surface temperature was maintained around 37ºC in Group I, but it reached 43ºC in Groups II and III. CONCLUSIONS: The NAPP has a greater capability for effective tooth bleaching than conventional light sources with a low concentration of HP without causing thermal damage. Tooth bleaching using NAPP can become a major technique for in-office bleaching in the near future

    The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS

    Get PDF
    The sensitivity of diffusion tensor imaging (DTI) for detecting microstructural white matter alterations has motivated the application of voxel-based statistics (VBS) to fractional anisotropy (FA) images (FA-VBS). However, detected group differences may depend on the spatial registration method used. The objective of this study was to investigate the influence of spatial registration on detecting cerebral asymmetries in FA-VBS analyses with reference to data obtained using Tract-Based Spatial Statistics (TBSS). In the first part of this study we performed FA-VBS analyses using three single-contrast and one multi-contrast registration: (i) whole-brain registration based on T2 contrast, (ii) whole-brain registration based on FA contrast, (iii) individual-hemisphere registration based on FA contrast, and (iv) a combination of (i) and (iii). We then compared the FA-VBS results with those obtained from TBSS. We found that the FA-VBS results depended strongly on the employed registration approach, with the best correspondence between FA-VBS and TBSS results when approach (iv), the “multi-contrast individual-hemisphere” method was employed. In the second part of the study, we investigated the spatial distribution of residual misregistration for each registration approach and the effect on FA-VBS results. For the FA-VBS analyses using the three single-contrast registration methods, we identified FA asymmetries that were (a) located in regions prone to misregistrations, (b) not detected by TBSS, and (c) specific to the applied registration approach. These asymmetries were considered candidates for apparent FA asymmetries due to systematic misregistrations associated with the FA-VBS approach. Finally, we demonstrated that the “multi-contrast individual-hemisphere” approach showed the least residual spatial misregistrations and thus might be most appropriate for cerebral FA-VBS analyses

    Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of √s=7 TeV corresponding to an integrated luminosity of 4.7 fb −1. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-kt algorithm with distance parameters R=0.4 or R=0.6, and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20≤pTjet1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-pT jets at |η|=4.5. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %

    Studies of energetic ion confinement during fishbone events in PDX

    No full text
    The 2.5 MeV neutron emission from the beam-target d(d, n)3He fusion reaction has been examined for all PDX deuterium plasmas which were heated by deuterium neutral beams. The magnitude of the emission was found to scale classically and to increase with Te3/2a as expected when electron drag is the primary energy degradation mechanism. The time evolution of the neutron emission through fishbone events was measured and used to determine the confinement properties of the energetic beam ions. Many of the experimental results are predicted by the Mode Particle Pumping Theory. © 1985 IOP Publishing Ltd
    corecore