6 research outputs found

    The Morphology of Asteroidal Dust Around White Dwarf Stars: Optical and Near-infrared Pulsations in G29-38

    Full text link
    More than 36 years have passed since the discovery of the infrared excess from circumstellar dust orbiting the white dwarf G29-38, which at 17.5 pc it is the nearest and brightest of its class. The precise morphology of the orbiting dust remains only marginally constrained by existing data, subject to model-dependent inferences, and thus fundamental questions of its dynamical origin and evolution persist. This study presents a means to constrain the geometric distribution of the emitting dust using stellar pulsations measured at optical wavelengths as a variable illumination source of the dust, which re-radiates primarily in the infrared. By combining optical photometry from the Whole Earth Telescope with 0.7-2.5 micron spectroscopy obtained with SpeX at NASA's Infrared Telescope Facility, we detect luminosity variations at all observed wavelengths, with variations at most wavelengths corresponding to the behavior of the pulsating stellar photosphere, but towards the longest wavelengths the light curves probe the corresponding time-variability of the circumstellar dust. In addition to developing methodology, we find pulsation amplitudes decrease with increasing wavelength for principal pulsation modes, yet increase beyond approximately 2 microns for nonlinear combination frequencies. We interpret these results as combination modes deriving from principal modes of identical l values and discuss the implications for the morphology of the warm dust. We also draw attention to some discrepancies between our findings and theoretical expectations for the results of the non-linearity imposed by the surface convection zone on mode--mode interactions and on the behavior of the first harmonic of the highest-amplitude pulsation mode.Comment: 12 pages, 6 figures, to be published in The Astrophysical Journa

    The morphology of the asteroidal dust around White Dwarf Stars : optical and near-infrared pulsations in G29-38

    Get PDF
    More than 36 yr have passed since the discovery of the infrared excess from circumstellar dust orbiting the white dwarf G29-38, which at 17.5 pc it is the nearest and brightest of its class. The precise morphology of the orbiting dust remains only marginally constrained by existing data, subject to model-dependent inferences, and thus fundamental questions of its dynamical origin and evolution persist. This study presents a means to constrain the geometric distribution of the emitting dust using stellar pulsations measured at optical wavelengths as a variable illumination source of the dust, which reradiates primarily in the infrared. By combining optical photometry from the Whole Earth Telescope with 0.7–2.5 ÎŒm spectroscopy obtained with SpeX at NASA’s Infrared Telescope Facility, we detect luminosity variations at all observed wavelengths, with variations at most wavelengths corresponding to the behavior of the pulsating stellar photosphere, but toward the longest wavelengths the light curves probe the corresponding time variability of the circumstellar dust. In addition to developing methodology, we find the pulsation amplitudes decrease with increasing wavelength for principal pulsation modes, yet increase beyond ≈2 ÎŒm for nonlinear combination frequencies. We interpret these results as combination modes derived from the principal modes of identical ℓ values and discuss the implications for the morphology of the warm dust. We also draw attention to some discrepancies between our findings and theoretical expectations for the results of the nonlinearity imposed by the surface convection zone on mode–mode interactions and on the behavior of the first harmonic of the highest-amplitude pulsation mode

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Physical modelling of near-Earth asteroid (23187) 2000 PN9 with ground-based optical and radar observations

    Get PDF
    We present a physical model and spin-state analysis of the potentially hazardous asteroid (23187) 2000 PN9. As part of a long-term campaign to make direct detections of the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, we collected optical light curves of the asteroid between 2006 and 2020. These observations were combined with planetary radar data to develop a detailed shape model, which was used to search for YORP acceleration. We report that 2000 PN9 is a relatively large top-shaped body with a sidereal rotation period of 2.53216 ± 0.00015 h. Although we find no evidence for rotational acceleration, YORP torques smaller than ∌10−8 rad d−2\sim 10^{-8}\, \rm rad\,{d}^{-2} cannot be ruled out. It is likely that 2000 PN9 is a YORP-evolved object, and may be an example of YORP equilibrium or self-limitation

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore