554 research outputs found

    Viscoelastic Properties of Foam Under Hydrostatic Pressure and Uniaxial Compression

    Get PDF
    AbstractFoam is a lightweight material suitable for aerospace applications for load bearing structures or noise reduction media. The microstructure of the foam, which is constructed with cell ribs, allows its unique mechanical properties. In this work, commercial polyurethane foams with a pore size on the order of a few hundred microns were subjected to quasi-static hydrostatic and uniaxial compression at low strain rates, as well as dynamic sinusoidal loading for studying their loss tangent and storage modulus. The identified incremental negative modulus depends on deformation modes, and it is been shown hydrostatic compression may trigger the negative bulk modulus mode, while uniaxial compression may not. The use of negative modulus in composite materials may lead to extreme high damping and high stiffness materials. Furthermore, by finite element calculations on a dodecahedral unit cell with different elastic constant, it is found that high elastic constant of the cell ribs may give rise to larger negative stiffness effects, when the cell in under hydrostatic compression

    Using a Threading-Followed-by-Swelling Approach to Synthesize 2 Rotaxanes

    Get PDF
    We have developed a "threading-followed-by-swelling" protocol to synthesize [2]rotaxanes efficiently and atom economically. Our protocol employs cis-1-[(Z)-alk-1'enyl]-2-vinylcyclopropane units as the termini of the threadlike components; these end groups are converted into more-sizable cycloheptadiene motifs, which function as stopper units, through Cope rearrangements at elevated temperature. We used this approach to synthesize [2]rotaxanes in good yield from [2]pseudorotaxanes featuring either one or two swellable termini to interlock three different types of macrocycle. The chiral centers created by the swelling process were "erased" by hydrogenating the cycloheptadiene termini into the corresponding cycloheptane units, affording achiral molecular [2]rotaxanes as the only final products

    B --> Phi K_S and Supersymmetry

    Full text link
    The rare decay B --> Phi K_S is a well-known probe of physics beyond the Standard Model because it arises only through loop effects yet has the same time-dependent CP asymmetry as B --> Psi K_S. Motivated by recent data suggesting new physics in B --> Phi K_S, we look to supersymmetry for possible explanations, including contributions mediated by gluino loops and by Higgs bosons. Chirality-preserving LL and RR gluino contributions are generically small, unless gluinos and squarks masses are close to the current lower bounds. Higgs contributions are also too small to explain a large asymmetry if we impose the current upper limit on B(B_s --> mu mu). On the other hand, chirality-flipping LR and RL gluino contributions can provide sizable effects and while remaining consistent with related results in B --> Psi K_S, Delta M_s, B --> X_s gamma and other processes. We discuss how the LR and RL insertions can be distinguished using other observables, and we provide a string-based model and other estimates to show that the needed sizes of mass insertions are reasonable.Comment: 33 pages, 32 figures, Updated version for PRD. Includes discussions of other recent works on this topic. Added discussions & plots for gluino mass dependence and effects of theoretical uncertaintie

    Planar 17O NMR study of Pr_yY_{1-y}Ba_2Cu_3O_{6+x}

    Full text link
    We report the planar ^{17}O NMR shift in Pr substituted YBa_{2}Cu_{3}O_{6+x}, which at x=1 exhibits a characteristic pseudogap temperature dependence, confirming that Pr reduces the concentration of mobile holes in the CuO_{2} planes. Our estimate of the rate of this counterdoping effect, obtained by comparison with the shift in pure samples with reduced oxygen content, is found insufficient to explain the observed reduction of T_c. From the temperature dependent magnetic broadening of the ^{17}O NMR we conclude that the Pr moment and the local magnetic defect induced in the CuO_2 planes produce a long range spin polarization in the planes, which is likely associated with the extra reduction of T_c. We find a qualitatively different behaviour in the oxygen depleted Pr_yY_{1-y}Ba_2Cu_3O_{6.6}, i.e. the suppression of Tc_c is nearly the same, but the magnetic broadening of the ^{17}O NMR appears weaker. This difference may signal a weaker coupling of the Pr to the planes in the underdoped compound, which might be linked with the larger Pr to CuO_2 plane distance, and correspondingly weaker hybridization.Comment: 8 pages, 9 figures, accepted in Phys Rev

    The COSINE-100 liquid scintillator veto system

    No full text
    This paper describes the liquid scintillator veto system for the COSINE-100 dark matter experiment and its performance. The COSINE-100 detector consists of eight NaI(Tl) crystals immersed in 2200 L of linear alkylbenzene-based liquid scintillator. The liquid scintillator tags between 65 and 75% of the internal 40K background in the 2–6 keV energy region. We also describe the background model for the liquid scintillator, which is primarily used to assess its energy calibration and threshold

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters
    corecore