155 research outputs found

    Dark Matter Halo Profiles in Scale-Free Cosmologies

    Full text link
    We explore the dependence of the central logarithmic slope of dark matter halo density profiles α\alpha on the spectral index nn of the linear matter power spectrum P(k)P(k) using cosmological NN-body simulations of scale-free models (i.e. P(k)knP(k) \propto k^n). For each of our simulations we identify samples of well resolved haloes in dynamical equilibrium and we analyse their mass profiles. By parameterising the mass profile using a ``generalised'' Navarro, Frenk & White profile in which the central logarithmic slope α\alpha is allowed to vary while preserving the r3r^{-3} asymptotic form at large radii, we obtain preferred central slopes for haloes in each of our models. There is a strong correlation between α\alpha and nn, such that α\alpha becomes shallower as nn becomes steeper. However, if we normalise our mass profiles by r2r_{-2}, the radius at which the logarithmic slope of the density profile is -2, we find that these differences are no longer present. We conclude that there is no evidence for convergence to a unique central asymptotic slope, at least on the scales that we can resolve.Comment: 9 pages, 4 figures. Accepted for publication in MNRA

    The cosmological free-free signal from galaxy groups and clusters

    Get PDF
    Using analytical models and cosmological N-body simulations, we study the free-free radio emission from ionized gas in clusters and groups of galaxies. The results obtained with the simulations are compared with analytical predictions based on the mass function and scaling relations. Earlier works based on analytical models have shown that the average free-free signal from small haloes (galaxies) during and after the reionization time could be detected with future experiments as a distortion of the CMB spectrum at low frequencies (ν<\nu < 5 GHz). We focus on the period after the reionization time (from redshift z=0z=0 up to z=7z=7) and on haloes that are more massive than in previous works (groups and clusters). We show how the average signal from haloes with M>1013h1MM > 10^{13} h^{-1} M_{\odot} is less than 10% the signal from the more abundant and colder smaller mass haloes. However, the individual signal from the massive haloes could be detected with future experiments opening the door for a new window to study the intracluster medium.Comment: 11 pages, 7 figure

    N-body simulations with generic non-Gaussian initial conditions I: Power Spectrum and halo mass function

    Get PDF
    We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html.Comment: 23 pages, 10 figure

    Solving the puzzle of subhalo spins

    Get PDF
    Investigating the spin parameter distribution of subhalos in two high-resolution isolated halo simulations, recent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field halos. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhalos as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution, as expected in the tidal stripping scenario

    Halo orbits in cosmological disk galaxies : tracers of information history

    Get PDF
    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner ∼20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes—the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity �0.6. We find that randomly selected samples of halo stars show no substructure in “integrals of motion” space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible

    The Sunyaev-Zeldovich effect in superclusters of galaxies using gasdynamical simulations: the case of Corona Borealis

    Full text link
    [Abridged] We study the thermal and kinetic Sunyaev-Zel'dovich (SZ) effect associated with superclusters of galaxies using the MareNostrum Universe SPH simulation. We consider superclusters similar to the Corona Borealis Supercluster (CrB-SC). This paper is motivated by the detection at 33GHz of a strong temperature decrement in the CMB towards the core of this supercluster. Multifrequency observations with VSA and MITO suggest the existence of a thermal SZ effect component in the spectrum of this cold spot, which would account for roughly 25% of the total observed decrement. We identify nine regions containing superclusters similar to CrB-SC, obtain the associated SZ maps and calculate the probability of finding such SZ signals arising from hot gas within the supercluster. Our results show that WHIM produces a thermal SZ effect much smaller than the observed value. Neither can summing the contribution of small clusters and galaxy groups in the region explain the amplitude of the SZ signal. When we take into account the actual posterior distribution from the observations, the probability that WHIM can cause a thermal SZ signal like the one observed is <1%, rising up to a 3.2% when the contribution of small clusters and galaxy groups is included. If the simulations provide a suitable description of the gas physics, then we conclude that the thermal SZ component of the CrB spot most probably arises from an unknown galaxy cluster along the line of sight. The simulations also show that the kinetic SZ signal associated with the supercluster cannot provide an explanation for the remaining 75% of the observed cold spot in CrB.Comment: Accepted for publication in MNRAS. 14 pages, 9 figure

    The Evolution of Central Group Galaxies in Hydrodynamical Simulations

    Full text link
    We trace the evolution of central galaxies in three ~10^13 M_sun galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. The evolution in the group potential leads, at z=0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion resembling either elliptical or S0 galaxies. Their z~2-2.5 main progenitors are massive M* ~ 3-10 x 10^10 M_sun, star forming (20-60 M_sun/yr) galaxies which host substantial reservoirs of cold gas (~5 x 10^9 M_sun) in extended gas disks. Our simulations thus show that star forming galaxies observed at z~2 are likely the main progenitors of central galaxies in galaxy groups at z=0. Their central stellar densities stay approximately constant from z~1.5 down to z=0. Instead, the galaxies grow inside-out, by acquiring a stellar envelope outside the innermost ~2 kpc. Consequently the density within the effective radius decreases by up to two orders of magnitude. Both major and minor mergers contribute to most of the mass accreted outside the effective radius and thus drive the evolution of the half-mass radii. In one of the three simulated groups the short central cooling time leads to a dramatic rejuvenation of the central group galaxy at z<1, affecting its morphology, kinematics and colors. This episode is eventually terminated by a group-group merger. Our simulations demonstrate that, in galaxy groups, the interplay between halo mass assembly, galaxy merging and gas accretion has a substantial influence on the star formation histories and z=0 morphologies of central galaxies.[Abridged]Comment: 28 pages, 23 figures, 9 tables, accepted to APJ (revised to match accepted version

    Haloes gone MAD: The Halo-Finder Comparison Project

    Full text link
    [abridged] We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends (FOF), spherical-overdensity (SO) and phase-space based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allows halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Via a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high resolution cosmological volume we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity, and peak of the rotation curve).Comment: 27 interesting pages, 20 beautiful figures, and 4 informative tables accepted for publication in MNRAS. The high-resolution version of the paper as well as all the test cases and analysis can be found at the web site http://popia.ft.uam.es/HaloesGoingMA

    Thin-section Computed Tomography findings before and after azithromycin treatment of neutrophilic reversible lung allograft dysfunction

    Get PDF
    Recently a novel subgroup of bronchiolitis obliterans syndrome (BOS) has been described in patients after lung transplantation with high neutrophil counts in broncho-alveolar lavage and recovery of lung functional decline with azithromycin treatment. We aimed to describe the thin-section computed tomography (CT) findings of these neutrophilic reversible allograft dysfunction (NRAD) patients before and after azithromycin.status: publishe
    corecore