27 research outputs found

    Bewirtschaftungsinduzierte Populationsveränderungen von Archaeen in Paddy Soils

    Get PDF
    Die Produktion des Treibhausgases Methan durch Archaeen im Nassfeldanbau von Reis ist von großer Relevanz für das Weltklima. In einem Mikrokosmenexperiment wurden die Bewirtschaftungsphasen im Anbau von Nassreis simuliert und die Populationsdynamik der Archaeen in drei unterschiedlichen Reisböden untersucht. Die molekularbiologische Analyse ausgesuchter Bewirtschaftungszustände (flooded und drained) mit Hilfe von DGGE zeigte deutliche Populationsshifts der Archaeen. Chemische und strukturelle Veränderungen des Bodens wurden ebenfalls beobachtet

    Off-line evaluation of mobile-centric indoor positioning systems: the experiences from the 2017 IPIN competition

    Get PDF
    The development of indoor positioning solutions using smartphones is a growing activity with an enormous potential for everyday life and professional applications. The research activities on this topic concentrate on the development of new positioning solutions that are tested in specific environments under their own evaluation metrics. To explore the real positioning quality of smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded datasets is a valid way to generate open data for comparing the different solutions created by research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition, the different datasets created, the teams participating in the event, and the results they obtained. We compare these results with other competition-based approaches (Microsoft and Perf-loc) and on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for the community are addressed along the paper. Our analysis paves the way for future developments on the standardization of evaluations and for creating a widely-adopted benchmark strategy for researchers and companies in the field.We would like to thank Topcon Corporation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potorti, Sangjoon Park, Hideo Makino, Nobuo Kawaguchi, Takeshi Kurata and Jesus Urena for their invaluable help in organizing and promoting the IPIN competition and conference. Many thanks to Raul Montoliu, Emilio Sansano, Marina Granel and Luis Alisandra for collecting the databases in the UJITI building. Parts of this work were carried out with the financial support received from projects and grants: REPNIN network (TEC2015-71426-REDT), LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref. 201450E011), "Metodologias avanzadas para el diseno, desarrollo, evaluacion e integracion de algoritmos de localizacion en interiores" (TIN2015-70202-P), GEO-C (Project ID: 642332, H2020-MSCA-ITN-2014-Marie Sklodowska-Curie Action: Innovative Training Networks), and financial support from the Ministry of Science and Technology, Taiwan (106-3114-E-007-005 and 105-2221-E-155-013-MY3). The HFTS team has been supported in the frame of the German Federal Ministry of Education and Research programme "FHprofUnt2013" under contract 03FH035PB3 (Project SPIRIT). The UMinho team has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT-Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013. G.M. Mendoza-Silva gratefully acknowledges funding from grant PREDOC/2016/55 by Universitat Jaume I.info:eu-repo/semantics/publishedVersio

    The smartphone-based offline indoor location competition at IPIN 2016: analysis and future work

    Get PDF
    This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors' estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.We would like to thank Tecnalia Research & Innovation Foundation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potortì, Sangjoon Park, Jesús Ureña and Kyle O’Keefe for their invaluable help in promoting the IPIN competition and conference. Parts of this work was carried out with the financial support received from projects and grants: LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref.201450E011), “Metodologías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores” (TIN2015-70202-P), REPNIN network (TEC2015-71426-REDT) and the José Castillejo mobility grant (CAS16/00072). The HFTS team has been supported in the frame of the German Federal Ministry of Education and Research programme “FHprofUnt2013” under contract 03FH035PB3 (Project SPIRIT). The UMinho team has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT — Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat

    Get PDF
    Background and Aims Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality. Methods Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray μ-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution. Results Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar. Conclusions Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose

    Trace elements at the intersection of marine biological and geochemical evolution

    Get PDF
    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies

    Message from the editors

    No full text

    Evaluating AAL Systems Through Competitive Benchmarking

    No full text

    Beyond Euclidean distance for error measurement in pedestrian indoor location

    Get PDF
    Indoor positioning systems (IPSs) suffer from a lack of standard evaluation procedures enabling credible comparisons: this is one of the main challenges hindering their widespread market adoption. Traditionally, accuracy evaluation is based on positioning errors defined as the Euclidean distance between the true positions and the estimated positions. While Euclidean is simple, it ignores obstacles and floor transitions. In this article, we describe procedures that measure a positioning error defined as the length of the pedestrian path that connects the estimated position to the true position. The procedures apply pathfinding on floor maps using visibility graphs (VGs) or navigational meshes (NMs) for vector maps and fast marching (FM) for raster maps. Multifloor and multibuilding paths use the information on vertical in-building communication ways and outdoor paths. The proposed measurement procedures are applied to position estimates provided by the IPSs that participated in the EvAAL-ETRI 2015 competition. Procedures are compared in terms of pedestrian path realism, indoor model complexity, path computation time, and error magnitudes. The VGs algorithm computes shortest distance paths; NMs produce very similar paths with significantly shorter computation time; and FM computes longer, more natural-looking paths at the expense of longer computation time and memory size. The 75th percentile of the measured error differs among the methods from 2.2 to 3.7 m across the evaluation sets
    corecore