33 research outputs found

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton–proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb−1 are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark. In the absence of significant deviations from the Standard Model background expectation, 95% confidence-level upper limits on the corresponding production cross-sections are obtained and these limits are translated into constraints on the parameter space of the models considered

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC

    Get PDF
    The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at √s=13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb −1 for the tt ¯ and γ+jet and 36.7 fb −1 −1 for the dijet event topologies

    In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

    Get PDF
    The response of the ATLAS detector to largeradius jets is measured in situ using 36.2 fb−1 of √s = 13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transversemomentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (pT). The precision of the relative jet energy scale is 1–2% for 200 GeV < pT < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same pT range

    Measurement of the azimuthal anisotropy of charged particles produced in s NN = 5.02 TeV Pb+Pb collisions with the ATLAS detector.

    Get PDF
    Measurements of the azimuthal anisotropy in lead-lead collisions at s NN = 5.02 TeV are presented using a data sample corresponding to 0.49 nb - 1 integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, v 2 - v 7 , which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics v n over wide ranges of the transverse momentum, 0.5  < p T <  60 GeV, the pseudorapidity, | η | <  2.5, and the collision centrality 0-80%. Results from different methods are compared and discussed in the context of previous and recent measurements in Pb+Pb collisions at s NN = 2.76  TeV and 5.02  TeV . In particular, the shape of the p T dependence of elliptic or triangular flow harmonics is observed to be very similar at different centralities after scaling the v n and p T values by constant factors over the centrality interval 0-60% and the p T range 0.5  < p T <  5 GeV

    Search for Higgs boson pair production in the γ γ W W ∗ channel using pp collision data recorded at s = 13 TeV with the ATLAS detector.

    Get PDF
    Searches for non-resonant and resonant Higgs boson pair production are performed in the γ γ W W ∗ channel with the final state of γ γ ℓ ν j j using 36.1  fb - 1 of proton-proton collision data recorded at a centre-of-mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence-level observed upper limit of 7.7 pb is set on the cross section for non-resonant production, while the expected limit is 5.4 pb. A search for a narrow-width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on σ ( p p → X ) × B ( X → H H ) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500 GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the Standard Model branching ratios of the H → γ γ and H → W W ∗ are assumed

    Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016

    Get PDF
    The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1 fb1 to 36.7 fb1 of pp collision data at s√=13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-to-simulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 5% depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate is measured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z→μμγ events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter

    Measuring and evaluating mindfulness based on its origin

    No full text
    Mindfulness is originated from the core of Buddhist meditation which has a history of over 2500 years. Since mindfulness-based interventions were successfully applied in helping patients with different symptoms in the West three decades ago, scientific researches in mindfulness have increased exponentially. However, to date there is no consensus on the definition and measurement scales of mindfulness. The prevailing conceptualizations of mindfulness seem to be confounded with different mindfulness attitudes and skills. Their content also seems to be watered-down without capturing all the essential domains of mindfulness. Leading mindfulness researchers suggest referring to the origin of mindfulness to resolve the confounding and watered-down problems. This thesis thus aims to empirically investigate the construct and model of mindfulness with reference to its original Buddha’s mindfulness discourse. In study 1, three self-report scales were developed based on Buddha’s conceptualization of mindfulness, namely the Body-Mind-Senses Awareness Scale, the Greed-Distress Unclinging Scale and the Mindfulness-related Features Scale. A quantitative survey was conducted with 415 participants to evaluate the scales. They demonstrated good factor structure, construct validity and internal consistency. Unexpectedly, the body-mind-sense awareness had no relation with greed-distress unclinging. But both of them were positively correlated with all mindfulness-related features. Study 2 aims to answer the call for using multiple assessment modalities to clarify the construct of mindfulness. A semi-structured interview (interview mindfulness) and experience sampling method (momentary mindfulness) are developed to address the response and memory bias of self-report scale. Semi-structured interview focuses more on the unclinging aspect while experience sampling focuses more on the present-moment awareness aspect. The results show that interview mindfulness has a low correlation with momentary mindfulness. When triangulated with study 1, the body-mind-senses awareness was positively correlated with momentary mindfulness but not related to interview mindfulness. The greed-distress unclinging was positively correlated with interview mindfulness but not related to momentary mindfulness. The results are consistent with hypotheses and support the validity of self-report questionnaire. It further supports that awareness is not necessarily positively associated with unclinging. These two aspects are better measured and analyzed separately. Study 3 aims to address the confounding and watered-down problem by building and evaluating a “pure” discernment-nonattachment mindfulness model that describes the pathway from mindfulness to stress reduction based on the Buddha’s discourse of mindfulness. It is then compared to a mindfulness-related features model to evaluate their contribution to stress reduction. The results reveal that awareness and unclinging contribute separately to stress reduction via self emotion appraisal, emotion regulation and nonattachment (complete mediation). No further explanatory contributions gained even when the mindfulness-related features model is incorporated into the “pure” mindfulness model. This thesis proposes a conceptualization of mindfulness based on the original Buddha’s mindfulness discourse and develops three different measurements. Accordingly it constructs a “pure” discernment-nonattachment mindfulness model for stress reduction to address the confounding and watered-down problems of prevailing conceptualization of mindfulness. The implications, limitations and future directions are discussed as well.published_or_final_versionSocial Work and Social AdministrationDoctoralDoctor of Philosoph

    Pluronic L-81 ameliorates diabetic symptoms in db/db mice through transcriptional regulation of microsomal triglyceride transfer protein

    Get PDF
    AIM: To test whether oral L-81 treatment could improve the condition of mice with diabetes and to investigate how L-81 regulates microsomal triglyceride transfer protein (MTP) activity in the liver
    corecore