58 research outputs found

    RNASwift: a rapid, versatile RNA extraction method free from phenol and chloroform.

    Get PDF
    RNASwift is an inexpensive, versatile method for the rapid extraction of RNA. Existing RNA extraction methods typically use hazardous chemicals including phenol, chloroform and formamide which are often difficult to completely remove from the extracted RNA. RNASwift uses sodium chloride and sodium dodecyl sulphate to lyse the cells and isolate the RNA from the abundant cellular components in conjunction with solid phase extraction or isopropanol precipitation to rapidly purify the RNA. Moreover, the purified RNA is directly compatible with downstream analysis. Using spectrophotometry in conjunction with ion pair reverse phase chromatography to analyse the extracted RNA, we show that RNASwift extracts and purifies RNA of higher quality and purity in comparison to alternative RNA extraction methods. The RNASwift method yields approximately 25 Όg of RNA from only 10(8)Escherichia coli cells. Furthermore, RNASwift is versatile; the same simple reagents can be used to rapidly extract RNA from a variety of different cells including bacterial, yeast and mammalian cells. In addition to the extraction of total RNA, the RNASwift method can also be used to extract double stranded RNA from genetically modified E. coli in higher yields compared to alternative methods

    Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry

    Get PDF
    RNA interference has provided valuable insight into a wide range of biological systems and is a powerful tool for the analysis of gene function. The exploitation of this pathway to block the expression of specific gene targets holds considerable promise for the development of novel RNAi-based insect management strategies. In addition, there are a wide number of future potential applications of RNAi to control agricultural insect pests as well as its use for prevention of diseases in beneficial insects. The potential to synthesise large quantities of dsRNA by in-vitro transcription or in bacterial systems for RNA interference applications has generated significant demand for the development and application of high throughput analytical tools for the rapid extraction, purification and analysis of dsRNA. Here we have developed analytical methods that enable the rapid purification of dsRNA from associated impurities from bacterial cells in conjunction with downstream analyses. We have optimised TRIzol extractions in conjunction with a single step protocol to remove contaminating DNA and ssRNA, using RNase T1/DNase I digestion under high-salt conditions in combination with solid phase extraction to purify the dsRNA. In addition, we have utilised and developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. Furthermore, we have optimised base-specific cleavage of dsRNA by RNase A and developed a novel method utilising RNase T1 for RNase mass mapping approaches to further characterise the dsRNA using liquid chromatography interfaced with mass spectrometry

    Accurate quantification of nucleic acids using hypochromicity measurements in conjunction with UV spectrophotometry

    Get PDF
    UV absorbance spectrophotometry is widely used for the quantification of nucleic acids. For accurate quantification it is important to determine the hypochromocity of the oligonucleotide or complex nucleic acid structure. The use of thermal denaturation studies in conjunction with UV spectrophotometry to determine hypochromicity requires prolonged, elevated temperatures, which may cause partial hydrolysis of RNA. In addition, dsRNA is difficult to denature even at elevated temperature and the extinction coefficients of nucleic acids are also affected by temperature, which makes it difficult to accurately determine the nucleic acid concentration. To overcome these caveats, we have utilised the chemical denaturant dimethyl sulfoxide which, in conjunction with a short thermal denaturation prevents renaturation of the duplex nucleic acids (dsDNA/RNA). Using this approach, we have measured the absorbance of both the unstructured and structured nucleic acids to accurately measure their hypochromicity and determine their extinction coefficients. For a range of different dsRNA we have for the first time determined values of 46.18-47.29 ”g/ml/A260 for the quantification of dsRNA using UV spectrophotometry. Moreover, this approach enables the accurate determination of the relative proportion of duplex nucleic acids in mixed ds/ss nucleic acid solutions, demonstrating significant advantages over current methods

    Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides

    Get PDF
    Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides

    Analysis of long dsRNA produced in vitro and in vivo using atomic force microscopy in conjunction with ion-pair reverse-phase HPLC

    Get PDF
    Long double-stranded (ds) RNA is emerging as a novel alternative to chemical and genetically-modified insect and fungal management strategies. The ability to produce large quantities of dsRNA in either bacterial systems, by in vitro transcription, in cell-free systems or in planta for RNA interference applications has generated significant demand for the development and application of analytical tools for analysis of dsRNA. We have utilised atomic force microscopy (AFM) in conjunction with ion-pair reverse-phase high performance liquid chromatography (IP-RP-HPLC) to provide novel insight into dsRNA for RNAi applications. The AFM analysis enabled direct structural characterisation of the A-form duplex dsRNA and accurate determination of the dsRNA duplex length. Moreover, further analysis under non-denaturing conditions revealed the presence of heterogeneous dsRNA species. IP-RP-HPLC fractionation and AFM analysis revealed that these alternative RNA species do not arise from different lengths of individual dsRNA molecules in the product, but represent misannealed RNA species that present as larger assemblies or multimeric forms of the RNA. These results for the first time provide direct structural insight into dsRNA produced both in vivo in bacterial systems and in vitro, highlighting the structural heterogeneity of RNA produced. These results are the first example of detailed characterisation of the different forms of dsRNA from two production systems and establish atomic force microscopy as an important tool for the characterisation of long dsRNA

    Chemically modified dsRNA induces RNAi effects in insects in vitro and in vivo: a potential new tool for improving RNA-based plant protection

    Get PDF
    Global agriculture loses over $100 billion of produce annually to crop pests such as insects. Many of these crop pests either are not currently controlled by artificial means or have developed resistance against chemical pesticides. Long dsRNAs are capable of inducing RNAi in insects and are emerging as novel, highly selective alternatives for sustainable insect management strategies. However, there are significant challenges associated with RNAi efficacy in insects. In this study, we synthesized a range of chemically modified long dsRNAs in an approach to improve nuclease resistance and RNAi efficacy in insects. Our results showed that dsRNAs containing phosphorothioate modifications demonstrated increased resistance to southern green stink bug saliva nucleases. Phosphorothioate-modified and 2â€Č-fluoro-modified dsRNA also demonstrated increased resistance to degradation by soil nucleases and increased RNAi efficacy in Drosophila melanogaster cell cultures. In live insects, we found chemically modified long dsRNAs successfully resulted in mortality in both stink bug and corn rootworm. These results provide further mechanistic insight into the dependence of RNAi efficacy on nucleotide modifications in the sense or antisense strand of the dsRNA in insects and demonstrate for the first time that RNAi can successfully be triggered by chemically modified long dsRNAs in insect cells or live insects

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Measurement of the top quark mass in the tt→ dilepton channel from √s = 8 TeV ATLAS data

    Get PDF
    The top quark mass is measured in the ttÂŻ → dilepton channel (lepton = e,ÎŒ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton proton centre-of-mass energy of √s = 8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop = 172.99±0.41 (stat) ±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from √s = 7 TeV data in the ttÂŻ → dilepton and ttÂŻ → lepton + jets channels results in mtop = 172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV
    • 

    corecore