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Abstract 

UV absorbance spectrophotometry is widely used for the quantification of nucleic acids. 

For accurate quantification it is important to determine the hypochromocity of the 

oligonucleotide or complex nucleic acid structure. The use of thermal denaturation 

studies in conjunction with UV spectrophotometry to determine hypochromicity requires 

prolonged, elevated temperatures, which may cause partial hydrolysis of RNA. In 

addition, dsRNA is difficult to denature even at elevated temperature and the extinction 

coefficients of nucleic acids are also affected by temperature, which makes it difficult to 

accurately determine the nucleic acid concentration. To overcome these caveats, we 

have utilised the chemical denaturant dimethyl sulfoxide which, in conjunction with a 

short thermal denaturation prevents renaturation of the duplex nucleic acids 

(dsDNA/RNA). Using this approach, we have measured the absorbance of both the 

unstructured and structured nucleic acids to accurately measure their hypochromicity 

and determine their extinction coefficients. For a range of different dsRNA we have for 

the first time determined values of 46.18-47.29 µg/ml/A260 for the quantification of 

dsRNA using UV spectrophotometry. Moreover, this approach enables the accurate 

determination of the relative proportion of duplex nucleic acids in mixed ds/ss nucleic 

acid solutions, demonstrating significant advantages over current methods. 

 

Keywords: 

UV absorbance; hypochromicity, dsRNA, UV spectrophotometry; A260 unit 
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Introduction 

UV absorbance spectrophotometry remains one of the most popular methods for the 

rapid quantification of nucleic acids.1-3 The absorbance of DNA and RNA at 260 nm is 

measured and the concentration determined using the Beer Lambert law (A = ܭ.C.l) in 

conjunction with the molar extinction coefficient (ܭ) of constituent nucleotides. However, 

inaccuracies in the extinction coefficients can reduce the accuracy of results obtained.4,5 

Three common methods are currently used to calculate nucleic acid mass 

concentration/A260 nm. The first method ignores base composition and assumes that the 

average molar mass and extinction coefficient of nucleotides is 330 g/mole and 10 

mMol-1 cm-1, respectively.6,7 For an absorbance (A260 nm) of 1, a concentration of 33 

µg/mL is obtained for single stranded (ss) oligonucleotide using the Beer Lambert 

equation.4,6 The second method assumes that ܭ is the sum of nucleotide extinction 

coefficients weighted by the number of times each base appears in the sequence.6 Both 

methods do not account for potential hypochromicity in the oligonucleotide or complex 

nucleic acid structures.  For accurate quantification it is important to determine the 

hypochromicity of the oligonucleotide or complex nucleic acid structure. The extinction 

coefficient of double stranded nucleic acids is less than the sum of the extinction 

coefficients of the corresponding two single stranded nucleic acids.8 This hypochromic 

effect of nucleotides is attributed to dipole induced dipole interactions resulting from 

base stacking.9 In addition to using the sum of the nucleotide extinction coefficients for a 

given sequence a factor of 0.9 is often applied to take into account base stacking 

interactions in single stranded nucleic acids.10 The third method described as the near-

neighbour calculation attempts to account for hypochromicity.5 It has been reported to 
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4 

 

yield extinction coefficients within 20% of the experimentally measured extinction 

coefficients.4,6 

 

Hypochromicity measurements can be made by comparing the absorbance of the non-

denatured and denatured nucleic acid and determining the melting profile of nucleic 

acids using UV spectrophotometry in conjunction with thermal denaturation.11,12 

However, at high temperatures, partial hydrolysis of RNA may occur, whereas at 

moderate temperatures, complete denaturation is not guaranteed. Furthermore very 

high temperatures are required to denature large dsRNA and the extinction coefficients 

of nucleic acids are affected by temperature, which makes it difficult to accurately 

determine the RNA concentration.13  Alternatively, the hypochromicity and concentration 

of the RNA or DNA can be measured based on the absorbance of the intact molecule 

with their corresponding nucleosides generated from hydrolysis or enzymatic reactions. 

Treatment with 0.3 M NaOH at 37°C or nucleases can be used to achieve nucleic acid 

hydrolysis.6,14 The limitation in the NaOH hydrolysis method is that deamination of C to 

U can potentially occur.4 Hydrolyses of nucleic acids at neutral pH have been reported; 

however it requires long incubation at 95 °C .15 Moreover, potential incomplete 

hydrolysis of complex and modified nucleic acid structures may result in inaccurate 

quantification.6 

 

 A previous study using NMR to accurately determine extinction coefficient yielded more 

accurate coefficients for nucleotide monophosphates. 4 The same study looked at the 

deviations between predicted and measured extinction coefficient and recommended 
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mass concentration/A260 nm coefficients of 37 and 38 µg/ml/A260 nm for calculation of 

ssDNA and ssRNA concentrations, respectively. To our knowledge there is no 

consensus accurate value for mass concentration/A260 unit (µg/mL) of long dsRNA. 

However, values of 40 µg/mL/A260 and 50 µg/mL/ A260, are commonly used for RNA and 

dsDNA, respectively.2 Moreover, there is no current method that accurately determines 

and validates the extinction coefficients/hypochromicity of dsDNA, dsRNA and mixed 

ds/ss-nucleic acids.4 

 

In this study, we have developed a high throughput method for the accurate 

quantification of nucleic acids using UV spectrophotometry in conjunction with 

hypochromicity measurements. In addition, our method enables the accurate 

quantification of duplex nucleic acids in mixed ds/ss nucleic acid solutions 

demonstrating significant advantages over current methods. 
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6 

 

Experimental Section 

Chemicals and Materials 

Genes were synthesised by GeneArtGene Synthesis (Invitrogen Life Technologies). 

Ampicillin sodium salt, tetracycline hydrochloride, isopropyl ȕ-D-1-thiogalactopyranoside 

(IPTG) ≥99%, sodium dodecyl sulphate (SDS) sodium chloride (NaCl), dimethyl 

sulfoxide (DMSO), RNA from baker’s yeast (S. cerevisiae) and phenylalanine specific 

transfer RNA from brewer’s yeast were all obtained from (Sigma-Aldrich, Poole, UK). 

TRIzol Max, isopropanol and ethanol (ThermoFisher Scientific, NJ, US), were used for 

nucleic acid purifications. Oligonucleotides were purchased from Eurofins Genomics, 

Ebersberg, Germany and both transfer RNAs were from Sigma-Aldrich, Poole, UK. 

 

Expression of dsRNA using E. coli HT115 (DE3). 

The E. coli strain, HT115 (DE3) 16 was obtained from Cold Spring Harbor Laboratory, 

NY, USA. Plasmids pCOIV and pDome11 that contain in-house designed 686 bp and 

481 bp sequences respectively, flanked on both sides with T7 promoters were ordered 

from Gene Art® Gene synthesis (Invitrogen). The E. coli HT115 (DE3) cells were 

transformed with either pCOIV or pDome11. The pCOIV and pDome11 transformed 

cells were grown in culture and induced with IPTG to express dsRNAs as previously 

described. 17 
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Analysis of purified dsRNA and total RNA 

RNA quantification was determined using a NanoDrop™ 2000c spectrophotometer 

(ThermoFisher Scientific). RNA concentrations were determined by absorbance at 260 

nm. Absorbance data using a NanoDrop™ 2000c spectrophotometer were normalized 

to a 1.0 cm (10.0 mm) path.  The A260/280 and A260/230 ratios were obtained using the 

NanoDrop™ instrument. Additional analysis of the RNA was performed using ion-pair 

reverse phase chromatography using a 10 µL injection from 100 µL of eluted/re-

suspended RNA. 

Ion Pair-Reverse Phase High Performance Liquid Chromatography (IP-RP HPLC) 

Samples were analysed by IP-RP-HPLC on Agilent 1100 series HPLC using a Proswift 

RP-1S Monolith column (50 mm x 4.6 mm I.D. ThermoFisher). Chromatograms were 

generated using UV detection at a wavelength of 260 nm. The chromatographic 

analysis was performed using the following conditions: Buffer A 0.1 M triethylammonium 

acetate (TEAA) pH 7.0 (Fluka, UK); Buffer B 0.1 M TEAA, pH 7.0 containing 25% 

acetonitrile (ThermoFisher). RNA was analysed using the following gradients. Gradient 

(1) starting at 22% buffer B to 27% in 2 minutes, followed by a linear extension to 62% 

buffer B over 15 minutes, then extended to 73% buffer B over 2.5 minutes at a flow rate 

of 1.0 ml/min at 50 °C. Gradient (2) starting at 22% buffer B to 27% in 2 minutes,  

followed by a linear extension to 72% buffer B over 15 minutes, then extended to 73% 

buffer B over 2.5 minutes, at a flow rate of 1.0 mL/min at 50 °C . 
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Determination of nucleic acid hypochromicity 

Nucleic acids synthesized in vitro and in bacteria were purified using RNASwift as 

previously described 18 in order to remove contaminating proteins and salts. The nucleic 

acid samples (A260 nm = 5 – 6) were mixed with DMSO (to 50 % DMSO final 

concentration). Samples were heated at 95 °C for 1 min . Identical samples mixed with 

DMSO were also prepared but without heating. Identical control samples mixed with an 

equal volume of nuclease-free water were also prepared (no heating). Triplicate 

biological replicates were performed for all samples analysed. Absorbance 

measurements were as follows. 

A0 = absorbance A260of nucleic acid in H2O 

A1 = absorbance A260of nucleic acid in DMSO 

A2 = absorbance A260 of nucleic acid in DMSO + heat 

 

Hypochromicity factor (H) = A2 / A0       (1) 

A2 / A1 = (A260 DMSO + heat)/ (A260 DMSO)      (2) 

A1 / A0 = (A260 DMSO)/ (A260 H2O)                                           (3) 

The nucleic acid extinction coefficient (ڙ) was determined from the sum of the individual 

nucleotide extinction coefficients as determined by 4. 

 T,          (4)ܭU or nTܭC + nUܭG + nCܭA + nGܭsum = nAܭ
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9 

 

where nN= number of nucleotide, N, in the nucleic acid and corrected for the 

hypochromicity using 

 sum         (5)ܭ * nucleic acid = (1/H)ܭ

The concentration was determined using the Beer-Lambert equation using the predicted 

and corrected extinction coefficient in conjunction with the sum of the mononucleoside 

phosphates masses to determine the molecular mass of the nucleic acid. 

 

Propagation of error 

Propagation of error in all experimental ratios was determined by first calculating the 

covariation of error and then the standard deviations. Standard deviations of the ratios 

shown were determined by propagation of the standard deviations of the absorbance 

values recorded in multiple measurements of aliquots of the same sample using UV 

spectrophotometry.19  SD (a/b) = a/b √((SDa/a)2 + (SDb/b)2
).    (6) 

 

Agarose gel electrophoresis 

1% agarose gels were used for gel electrophoresis. RNA loading dye 2x (NEB) was 

added to RNA samples and loaded on the gel. 1X TAE buffer (40 mM Tris (pH 7.6), 20 

mM acetic acid and 1 mM EDTA) was used to perform electrophoresis at 100 V for 45 

mins. The agarose gels were pre-stained with ethidium bromide and images obtained 

using a UV imaging system fitted with charge coupled device (CCD) camera 

(Biospectrum® Multispectral Imaging System). 
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Nucleic acids used in this study 

Nucleic acid  Sequence/Composition 
NTPs equimolar ATP/CTP/GTP/UTP 

dNTPs equimolar dATP/dCTP/dGTP/dTTP 

15mer RNA oligo CAAAAGUCCGUGAGA  
(A:6; C:3; G: 4; U: 2) 

13mer DNA oligo AGCTAGCTAGCTA  
(dA:4; dC:3; dG: 4; T: 2) 

ssRNA (521 ntr)  (A:131; C:144; G102; U:144) 
dsRNA (521 bp) (A:275; C:246; G:246; U:275) 

dsDNA (518 bp) (dA:275; dC:243; dG:243; T:275) 
 

dsRNA (686 bp) (A:261; C:425; G:425; U:261)  

dsRNA (481 bp) (A:190; C:291; G:291; U:190) 

ssRNA (600 ntr)* (A:150; C;150; G150; U:150) 

ssRNA (550 ntr)* (A:150; C:100; G150; U:150) 
ssDNA (600 ntr)* (dA:150; dC;150; dG150; T:150) 
ssDNA (550)* (dA:150; dC;100; dG150; T:150) 
 

Preparation of model/standard curves 

A2 / A1 value of 1.105 would be obtained for RNA sample containing 50% A260 nm of 

dsRNA and 50% A260 nm of ssRNA where 1.0 and 1.21 is the A2/A1 values for pure 

ssRNA and dsRNA, respectively (50%*1.21 + 50%*1.0) 

A model equation is therefore proposed: 

A2 / A1 =1.21 (%Abs260 of dsRNA/100) + 1.0 (1 - %Abs260 of dsRNA/100)   (7)  

Or %dsRNA Abs260 = (A2 / A1 - 1)/0.0021.      (8) 
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By substituting a range of hypothetical %Abs260 of dsRNA values in the equation, a 

range of hypothetical A2 / A1 values are obtained. Using these hypothetical data and 

plotting A2 / A1 values against %Abs260 of dsRNA values we generate a model linear 

calibration curve. Similarly, a standard curve is obtained by plotting %Abs260 of dsRNA 

against experimentally derived A2 / A1 values. 

Concentration of dsRNA was determined using the %dsRNA Abs260 as determined 

above in conjunction with the total A260 to calculate the corresponding A260 for dsRNA. 

Overall concentration was subsequently calculated using the value of 46.52 µg/mL/A260: 

Mass concentration = %dsRNA Abs260/100 x Total RNA A260 x 46.52 µg/mL/A260. (9) 
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Results and Discussion 

1.0 Validation of a method using DMSO and heat to measure the hypochromicity 

of dsRNA 

High DMSO concentrations (>75%) have previously been shown to disrupt the structure 

and stability of RNA11,20 and DNA,21,22 consistent with disruption of base-stacking 

interactions and increased flexibility. In order to perform hypochromicity measurements 

using DMSO in conjunction with thermal denaturation, a range of dsRNAs synthesized, 

in either E. coli or by in vitro transcription, were purified using a combination of RNase 

T1 and solid phase extraction to remove contaminating ssRNA and NTPs (see Figure 

S1). Following purification, the dsRNA (686 bp) was heated at 95 °C for 1 min in 50% 

DMSO and analysed using agarose gel electrophoresis (see Figure 1A). The results 

show the effective denaturation of the duplex dsRNA into the corresponding ssRNA 

preventing re-annealing of the dsRNA. In addition, decreased ethidium bromide 

fluorescence was observed in the corresponding ssRNA owing to reduced intercalation. 

 

To further study the effects of DMSO, a range of dsRNA (521 bp and 481 bp) were 

incubated in the presence and absence of DMSO with and without heating (see Figure 

1B). The results show a small relative reduction in the ethidium bromide fluorescence 

for dsRNA in the presence of DMSO without heating but no dissociation of strands (see 

Figure 1B).  These results demonstrate that in the presence of 50% DMSO it is not 

sufficient to disrupt the duplex structures. However, it destabilizes base stacking 
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interactions, resulting in reduced intercalation of the ethidium bromide and subsequent 

fluorescence. 

 

In addition to denaturation of dsRNA, the same approach was used to denature dsDNA 

(518 bp). dsDNA was generated by PCR, purified using solid phase extraction to 

remove ssDNA and dNTP impurities and analysed using IP RP HPLC (see Figure S2). 

The dsDNA was added to 50% DMSO including a thermal denaturing step to denature 

the dsDNA to its corresponding ssDNAs prior to analysis using gel electrophoresis (see 

Figure 1C). The results reveal that, unlike dsRNA, a proportion of dsDNA dissociates 

into ssDNA upon addition of 50% DMSO in the absence of heat. However, in the 

presence of 50% DMSO and thermal denaturation the dsDNA duplex completely 

dissociates into the corresponding ssDNA. These results highlight the difference in the 

stability of the dsDNA vs dsRNA duplex attributed to increased base-stacking 

interaction energy in the A-form conformation of dsRNA. We therefore used a range of 

DMSO concentrations to determine the appropriate concentration to disrupt the base 

stacking interactions without dissociating the duplex strands (see Figure 1D). The 

results show that using a lower % of DMSO (16%) reduced the amount of the dsDNA 

that was denatured but still caused strand separation upon heating. 

 

1.1 Quantitative analysis of the hypochromicity of dsRNA 

Following the successful demonstration that the addition of 50% DMSO with a short 

thermal denaturation step prevents re-annealing of the dsRNA, we used this method to 

determine the dsRNA hypochromicity in conjunction with UV spectrophotometry.  A260 
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values were obtained in absence of DMSO (A0) the presence of DMSO (A1) and DMSO 

+ heat (A2) to denature the dsRNA to their corresponding ssRNAs. This enables an 

accurate A260 measurement of both the unstructured denatured nucleic acids and the 

intact non-denatured dsRNA (see Table 1). The hypochromicity factor (H) was 

determined by calculating the ratio of A2/A0. Values between 1.45-1.50 were obtained 

for a range of different dsRNA and 1.21 for ssRNA. The A1/A0 ratios observed for both 

ds and ssRNA were typically 1.22 demonstrating the reduction in single stranded base 

stacking interactions in ssRNA and a reduction in base stacking interactions in the 

duplex dsRNA with the addition of DMSO. Furthermore, heating of the ssRNA in the 

presence of DMSO does not change the A260 ratios demonstrating that no further 

change in hypochromicity is observed. However, heating of the dsRNA in the presence 

of DMSO causes a further increase in absorbance as the duplex strands are denatured 

to their corresponding single strands. 

 

1.2 Quantitative analysis of the hypochromicity of structured yeast tRNAs 

A high degree of secondary structure in specific RNA molecules can lead to a significant 

hypochromicity that is not accounted for in the standard methods to calculate extinction 

coefficients using nearest-neighbor effects, which results in a systematic 

underestimation of RNA concentrations.  In addition, previous data have demonstrated 

that the thermal denaturation of riboswitch RNAs is not a convenient or reliable method 

for determining the UV absorbance without the hypochromic effect from base-pairing 

interactions 13,15. For RNAs with a high degree of secondary structure thermal hydrolysis 

to the component mononucleoside phosphates has been used for quantification 15. The 
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ability of the developed method in this study to rapidly determine the hypochromicity of 

structured RNAs was analysed using phenylalanine tRNA and total tRNA from S. 

cerevisae (see Table 2). The results show hypochromicity factors of 1.22 and 1.21 for 

phenyl tRNA and total tRNA, similar to values obtained for larger ssRNA molecules. In 

addition, similar to ssRNA, further heating of the tRNAs in the presence of DMSO does 

not significantly change the A260 ratios, demonstrating that no further change in 

hypochromicity is observed. These results demonstrate that for structured RNAs such 

as tRNAs, the addition of 50% DMSO is sufficient to destabilise their base stacking 

interactions and intramolecular folding. 

  

1.3 Quantitative analysis of the hypochromicity of dsDNA, oligonucleotides and 

oligoribonucleotides 

The hypochromicity factor (A2/A0) for dsDNA was determined to be 1.56 and is higher 

than that obtained for dsRNA (see Table 2). It is noteworthy that the A1/A0 ratio is higher 

than that obtained for dsRNA owing to the significant ssDNA generated upon addition of 

50% DMSO. In addition to the analysis of large ss/ds nucleic acids typically > 400 nt/bp, 

hypochromicity measurements of short oligonucleotides (<20 nts) were also obtained 

(see Table 2). The results show that similar hypochromicity values of 1.21 were 

obtained for oligonucleotides/oligoribonucleotides when compared to larger ssRNA and 

ssDNA molecules. This suggests that intramolecular interactions/ss base stacking 

interactions in short oligonucleotides are similar to those in large ssDNA and ssRNA. 

Furthermore, hypochromicity factors for NTPs and dNTPs were also determined (see 
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Table 2). The results show no change in A260 nm were observed demonstrating that there 

is no alteration in the extinction coefficients in the presence of DMSO and as expected 

they do not exhibit hypochromicity upon heating in DMSO. 

 

2.0 Determination of nucleic acid extinction coefficients and concentration using 

hypochromicity measurements 

In this study, we have used the measurements of hypochromicity outlined previously to 

accurately determine the overall extinction coefficient and mass concentration/A260 for a 

range of nucleic acids. In each of the nucleic acids analysed the base sequence and 

composition is known, therefore we have used the sum of the monomer extinction 

coefficients as determined in 4 to compare the calculated and measured extinction 

coefficients based on the hypochromicity measurements (see Table 3). In addition, 

using the sum of the mononucleoside phosphate masses we have determined the mass 

concentration/A260 in conjunction with the calculated and measured extinction 

coefficients (see Table 3). 

 

The results obtained in Table III demonstrate that for a number of different dsRNA 

sequences typical values of 46.18-47.29 (median=46.52) µg/ml/A260/ were obtained. To 

our knowledge we believe this is the first time an accurate value for the calculation of 

the concentration of dsRNA directly from A260 measurements has been experimentally 

obtained. For larger ssRNAs a value of 37.80 µg/ml/A260 (equimolar mononucleotide) 

was obtained which is lower than the typically reported value often used for RNA 40 
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µg/ml/A260. For ssRNA oligoribonucleotides (13 mer) a value of 34.85 µg/ml/A260 was 

obtained. For dsDNA (dA:275; dC:243; dG:243; T:275) a value of 46.25 µg/ml/A260 was 

determined compared to previously reported values typically 50 µg/ml/A260.
2
 

The results show that for ssDNA (13 mer) a typical value of 34.53 µg/ml/A260 and 

ssDNA (550 ntr) 34.73 µg/ml/A260 was obtained. For ssRNA and ssDNA 

oligonucleotides containing equimolar base composition a typical value of 37.80 and 

35.70 µg/ml/A260 was predicted using this approach. For structured tRNAs values of 

37.80 and 37.18 µg/ml/A260 were obtained taking into account the hypochromicity 

measurement. 

 

3.0 Quantification of ds and ss nucleic acids in complex mixtures  

Previous results showed that in the presence of 50% DMSO further heating of ssRNA 

resulted in no hyperchromic effect (A2/A1 = 1.0) whilst heating of dsRNA in 50% DMSO 

resulted in a hyperchromic effect (A2/A1 = 1.2). Therefore, it is proposed that a sample 

containing a mixture of dsRNA and ssRNA upon heating in DMSO, will have a 

hyperchromic effect between 1.0 to 1.2 depending on the relative proportion of dsRNA 

in the sample. We can therefore generate a model linear curve of (A2/A1) against % 

dsRNA values (see Figure S3). To experimentally validate the model, standards 

containing a range of known proportions of dsRNA relative to ssRNA were prepared 

(see Figure S4) and A2/A1 ratios determined as previously described and plotted against 

the relative % of dsRNA (see Figure 2A). The results show the expected linear 

relationship between the relative % of dsRNA and A2/A1 ratio. 
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We used this approach to determine an unknown percentage and concentration of 

dsRNA in a complex mixture (see Figure 2B, Figure 3). To demonstrate the accuracy of 

method, the relative proportion and concentration of total dsRNA and dsRNA were 

determined as 24.4% (281.1 ng/µL) and 49.1% (565.5 ng/µL) for known RNA standards 

containing 25% and 50% dsRNA respectively. Samples containing an unknown quantity 

of dsRNA were determined to be 15.2% (175.7 ng/µL) dsRNA. 

Similar to the method described above the same approach can be used to measure the 

amount of dsDNA present in complex ds/ss DNA mixtures using the linear relationship 

between the A2/A1 ratio and % dsDNA absorbance. For a known DNA standard 

containing 45% dsDNA the relative proportion of total dsDNA was determined as 

44.75% (see Figure 2C). 

 It should be noted that although a small concentration of the dsDNA is denatured at 

16% DMSO, this does not affect the determination of the relative proportion dsDNA; the 

hypochromicity due to the denatured DNA is reflected in the A1/A0 ratio (1.37) and 

accounted for in the equation (A2 / A1 = 0.0036 (dsDNA Abs260) + 1.0069). This provides 

a rapid, high throughput quantitative and qualitative approach to analysing the amount 

of dsRNA/DNA present in all mixed DNA or RNA nucleic acid samples. No separation or 

purification of the dsRNA/DNA is required prior to accurate quantification. To our 

knowledge this is the first time UV spectrophotometry has been used for accurate 

quantification of duplex structures in mixed ds/ss nucleic acid solutions. 
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Conclusions 

UV spectrophotometry has been used to rapidly determine the hypochromicity of a wide 

range of nucleic acids including ssDNA/RNA, oligonucleotides, structured RNA and 

dsRNA. We have utilised the chemical denaturant dimethyl sulfoxide in conjunction with 

short thermal denaturation which prevents renaturation of the duplex nucleic acids (ds 

DNA/RNA) to measure the absorbance of both the unstructured and structured nucleic 

acids. This approach does not require prolonged, elevated temperatures, which may 

cause partial hydrolysis of RNA or incomplete denaturation of the dsRNA. In addition, 

this method is not affected by changes in the extinction coefficients of nucleic acids with 

temperature, as all A260 measurements are performed at room temperature. Using this 

approach, we have used the measurements of hypochromicity outlined previously to 

accurately determine the overall extinction coefficient and mass concentration/A260 for a 

range of nucleic acids. We have for the first time determined a median value of 46.52 

µg/ml/A260 for the quantification of dsRNA using UV spectrophotometry, enabling the 

accurate determination of the relative proportion of duplex nucleic acids in mixed ds/ss 

nucleic acid solutions and demonstrating significant advantages over current methods. 

This provides a rapid, high throughput quantitative and qualitative approach to analysing 

the amount of dsRNA present in all RNA samples. No separation or purification of the 

dsRNA is required prior to accurate quantification. To our knowledge this is the first time 

UV spectrophotometry has been used for accurate quantification of duplex structures in 

mixed ds/ss nucleic acid solutions. 
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Figure Legends: 

 

Figure 1. Agarose gel electrophoresis analysis of the effects of DMSO on dsRNA (A) 

50% DMSO was added to purified dsRNA (686 bp). Thermal denaturation was 

performed at 95 ϶C for 1 min. B) 50% DMSO was added to purified dsRNA (481 bp and 

518 bp) dsRNA with and without additional thermal denaturation at 95 ϶C for 1 min. C) 

Agarose gel electrophoresis analysis of the effects of 50% DMSO on dsDNA (518 bp). 

D) A range of DMSO concentrations were added to dsDNA (518 bp and 823 bp) with 

and without additional thermal denaturation at 95 ϶C for 1 min.   

 

Figure 2. Quantification of ds RNA/DNA in nucleic acid mixtures using 

spectrophotometry. (A) Standard curve generated using mixtures of dsRNA (521 bp) 

and ssRNA (521 nt) standards. Following the experimental determination of the A2 and 

A1 values, the ratio A2/A1 of the corresponding mixtures were plotted against % dsRNA 

and the equation obtained is given by %dsRNA Abs260 = (A2/A1 - 1.0051)/0.002). (B) 

Standard curve generated using mixtures of 521 bp dsRNA and ssRNA (E. coli total 

RNA). A2/A1 ratios of the corresponding mixtures were plotted against % dsRNA and the 

equation is given by %dsRNA Abs260 = (A2/A1 - 1.0038)/0.0021). (C) Standard curve 

generated using mixtures of dsDNA and ssDNA (oligonucleotides). Following the 

experimental determination of the A2 and A1 values for dsDNA, the ratio A2/A1 were 

plotted against percentage dsDNA and the equation is given by %dsDNA Abs260 = 

(A2/A1 -1.0069)/0.0036). 
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Figure 3. IP RP HPLC analysis of nucleic acid mixtures containing varying proportions 

of dsRNA (521 bp) and ssRNA (E. coli total RNA). (A) IP RP HPLC analysis (using 

gradient 1) of a mixture containing 25% dsRNA (521 bp) (based on A260). The A2/A1 

ratio for this nucleic acid mixture predicted 24.38% dsRNA, corresponding to a dsRNA 

concentration of 281.08 ng/µl (B) IP RP HPLC analysis (using gradient 1) of a mixture 

containing 50% dsRNA (521 bp) (based on A260). The A2/A1 ratio for this complex 

mixture predicted 49.05% dsRNA corresponding to a dsRNA concentration of 565.52 

ng/µL. (C) IP RP HPLC analysis (using gradient 2) of a complex mixture containing an 

unknown amount of dsRNA (481 bp). The A2/A1 ratio predicted 15.24% dsRNA 

corresponding to a concentration of 175.71 ng/µL. 

 

Supporting Information 

IP RP HPLC analysis of experimental RNA and DNA samples, model linear curves for 

the quantification of ds and ssRNA/DNA in complex nucleic acid mixtures, IP RP HPLC 

analysis of nucleic acid mixtures containing varying proportions of dsRNA and E. coli 

total RNA. 
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Table 1. Hypochromicity measurements of ssRNA and dsRNA. A260 values were 

obtained in the absence of DMSO (A0), the presence of DMSO (A1) and DMSO + 

heat (A2) to denature the dsRNA to their corresponding ssRNAs. The hypochromicity 

factor (H) was determined by calculating the ratio A2/A0. Absorbance values are 

shown as means (n=3) ± propagated S.D. 

 

 

 

 

Nucleic Acid A
260

 A
1/ A0 A2/ A0 A2/A1 

dsRNA (521 bps) 1.24±0.005 1.50±0.007 1.21±0.005 

dsRNA (481 bps)  1.24±0.004 1.48±0.006 1.20±0.005 

dsRNA (686 bps)  1.21±0.003 1.45±0.004 1.20±0.004 

    

 A
1/ A0 A2/ A0 A2/A1 

ssRNA A (521 nt) 1.22±0.005 1.22±0.006 1.00±0.005 

ssRNA B (521 nt) 1.22±0.006 1.23±0.006 1.00±0.005 

ssRNA C (521 nt) 1.22±0.007 1.21±0.008 1.01±0.008 

Average  1.22±0.010 1.22±0.012 1.00±0.011 

    

dsRNA A2/A0 

ssRNA A2/A0 

 

  
      1.48/1.22 = 1.21 
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Table 2. A summary of the ratios of the A260 measurements A260 values were 

obtained in absence of DMSO (A0) the presence of DMSO (A1) and DMSO + heat 

(A2)  to denature the dsRNA to their corresponding ssRNAs. This enables an 

accurate A260nm measurement of both the unstructured denatured nucleic acids and 

the intact non-denatured dsRNA (see Table 1). The hypochromicity factor (H) was 

determined by calculating the ratio of A2/A0. Absorbance values are shown as means 

(n=3) ± propagated S.D. 

 

Sample A
1/ A0 A2/ A0 A2/A1 

NTPs 1.00±0.002 1.00±0.002 1.00±0.002 

dNTPs 1.00±0.004 1.00±0.005 1.00±0.004 

ssRNA oligoribonucleotide (15 mer) 1.21±0.003 1.21±0.007 0.99±0.006 

ssDNA oligonucleotide (13 mer)  1.21±0.007 1.21±0.005 1.00±0.007 

ssRNA (521 nt) 1.22±0.010 1.22±0.012 1.00±0.011 

dsRNA (521 bp) 1.24±0.005 1.50±0.007 1.21±0.005 

dsRNA (481bp) 1.24±0.004 1.48±0.006 1.20±0.005 

dsRNA (686 bp) 1.21±0.003 1.45±0.004 1.20±0.004 

dsDNA (518 bp) 1.40±0.004 1.56±0.002 1.11±0.003 

Phenylalanine  tRNA 
(S. cerevisae) 

1.22±0.003 1.22±0.003 1.00±0.003 

Total tRNA (S. cerevisae) 1.20±0.003 1.21±0.003 1.00±0.001 
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Table 3. Determination of the extinction coefficient (ڙ) and concentration of nucleic 

acids using hypochromicity factors (H) in conjunction with A260 measurements. The 

nucleic acid extinction coefficient (ڙ) was determined from the sum of the individual 

nucleotide extinction coefficients as determined by (4). The concentration was 

determined using the overall predicted extinction coefficient in conjunction with the sum 

of the mononucleoside phosphate masses to determine the molecular mass of the 

nucleic acid. * The calculated nucleic acid extinction coefficient and concentration 

determined using the hypochromicity factors (H). 

  

 

Nucleic acid Sequence (H) ڙ 
 

(mM
-1 

cm
-1

) 

 

 *ڙ
 

(mM
-1 

cm
-1

) 

 

Conc 
 

(µg 
/ml/A260) 

Conc* 
 

(µg 
/ml/A260) 

ssRNA (600 nt) (A:150;C:150; 
G:150;U:150) 

1.22 6574.50 5388.93 30.98 37.80 

ssRNA (550 nt) (A:150;C:100; 
G:150;U:150) 

1.22 6221.00 5099.18 30.14 36.77 

ssDNA (600 nt) (dA:150;dC;150; 
dG:150;T:150) 

1.21 6435.00 5318.18 29.504 35.70 

ssDNA (550 nt) (dA:150;dC;150; 
dG:150;T:150) 

1.21 6080.00 5024.79 28.702 34.73 

ssRNA (15 nt) CAAAAGUCCGUGAGA 

 
1.21 178.90 147.91 28.80 34.85 

ssDNA (13 nt) 
 

AGCTAGCTAGCTA 
 

1.21 147.40 121.80 28.53 34.53 

ssRNA (521 nt) 
(A:131; C:144; 
G102; U:144) 

1.22 
5608.90 

 
4597.46 

 
31.36 

 
38.27 

dsRNA (521 bp) 
(A:275; C:246; 
G:246; U:275) 

1.50 
11497.90 

 
7665.27 

 
30.78 

 
46.18 

 

dsRNA (481 bp) 
(A:190; C:291; 
G:291; U:190) 

1.48 
10261.85 

 
6933.68 

 
31.95 47.29 

dsRNA (686 bp) 
(A:261; C:425; 
G:425; U:261) 

1.45 
14580.23 

 
10055.33 

 
32.08 46.52 

 

dsDNA (518 bp) 
(dA:275; dC:243; 
dG:243; T:275) 

1.56 
11180.54 

 
7167.01 

 
29.65 

 
46.25 
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