68 research outputs found

    Practical Investigation of Effectiveness of Direct Solar-Powered Air Heater

    Full text link
    Solar energy is clean and available, and its use doesn\u27t hurt the environment. Heating conditioned homes and offices in wintertime deduct a large part of the amount of fuel consumed for these purposes. The use of solar radiation to heat the air proved its feasibility and usefulness and is in the research and development process and takes many forms. One of the primary types of solar air heaters is solar air heater of a transparent collector. In this study, a transparent collector solar air heater was designed and manufactured with an area of 1 m2. An aluminum plate was used to be the heating source; it takes its heat from the solar radiation. The tests results confirm the validity of this solar air heater type. The temperature of the heated air increased about 101% of the ambient air. The aluminum plate has proven to work as a source of heat

    Photovoltaic/thermal systems for carbon dioxide mitigation applications: a review

    Get PDF
    The urgent need to mitigate carbon dioxide (CO2) emissions and address climate change has led to increasing interest in renewable energy technologies. There are other promising energy generation systems, including photovoltaic/thermal (PV/T) systems. This paper provides a comprehensive review of PV/T systems for CO2 mitigation applications. PV/T systems are reviewed according to their principles, their design configurations, and their performance characteristics. Various types of PV/T systems, including flat-plate, concentrating, hybrid, and novel designs, are discussed, along with their advantages and limitations. In addition to examining PV/T systems as part of the integration of building systems with renewable energy sources and energy storage technologies. Furthermore, the environmental and economic aspects of PV/T systems, as well as their potential for CO2 mitigation in various applications such as residential, commercial, industrial, and agricultural sectors, are critically analyzed. Finally, future research directions and challenges in the field of PV/T systems for CO2 mitigation are outlined. The purpose of this review is to provide researchers, policymakers, and practitioners with information on how PV/T systems can be applied to reduce CO2 emissions and promote sustainable building design

    Design and implementation of smart integrated hybrid Solar-Darrieus wind turbine system for in-house power generation

    Get PDF
    This paper presents the design and development of an integrated hybrid Solar-Darrieus wind turbine system for renewable power generation. The Darrieus wind turbine's performance is meticulously assessed using the SG6043 airfoil, determined through Q-blade simulation, and validated via comprehensive CFD simulations. The study identifies SG6043 as the optimal airfoil, surpassing alternatives. CFD simulations yield specific coefficients of power (0.2366) and moment (0.0288). The paper also introduces a hybrid prototype, showcasing of 10 W photovoltaic module and improved turbine performance with the SG6043 airfoil. The focus extends to an optimized hybrid PV solar-wind system seamlessly integrated with IoT technology for remote monitoring. Addressing weather challenges, the research suggests blade shape optimizations via Q-blade and an IoT-based solution leveraging the ESP32 Wi-Fi module. Theoretical results project electrical energy generation ranging from 0.88 kW on March 14, 2023, to 0.06 kW on February 20, 2023. Darrieus wind turbines, experiencing increased blade drag, require less lift to operate. Experimental and theoretical results converge well, affirming the model's reasonable assumptions. Beyond advancing renewable energy technologies, this research sets the stage for future investigations aimed at enhancing the efficiency and capabilities of hybrid wind-solar PV systems

    The effect of a reversed circular jet impingement on a bifacial module PVT collector energy performance

    Get PDF
    Photovoltaic thermal (PVT) technologies have a significant downside in addition to their numerous advantages. PVT technologies are constrained by the fact that its photovoltaic module gains heat due to exposure to solar irradiance, which reduces the photovoltaic efficiency. Jet impingement is one of the most effective methods to cool a photovoltaic module. An indoor experiment using a solar simulator was conducted on a bifacial PVT solar collector cooled by a reversed circular flow jet impingement (RCFJI) to evaluate the energy performance of the PVT collector. The study was conducted under a constant solar irradiance of 900W/m2 and flowrate (mass) ranging from 0.01 to 0.14 kg/s. Three bifacial modules with 0.22, 0.33, and 0.66 packing factors were mounted 25 mm above the RCFJI for cooling. The 0.66 packing factor module recorded the highest photovoltaic efficiency of 10.91 % at 0.14 kg/s flowrate (mass). Meanwhile, the 0.22 and 0.33 packing factors recorded a photovoltaic efficiency of 4.50 % and 6.45 %, respectively. The highest thermal efficiency recorded under the same operating condition was 61.43 %, using a 0.66 packing factor. Overall, the highest combined photovoltaic thermal (PVT) efficiency for 0.22, 0.33, and 0.66 was 56.62 %, 61.88 %, and 72.35 %, respectively

    Performance enhancement of photovoltaic modules with passive cooling multidirectional tapered fin heat sinks (MTFHS)

    Get PDF
    The electrical output of photovoltaic (PV) modules degrades with continued exposure to extreme temperatures caused by solar radiation. The uniqueness of this research lies in the utilization of multidirectional fins with varying heights, which effectively accelerate heat transfer in PV cooling systems by inducing a transition in the boundary layer within the confined zone of the fins. The research aims to investigate the effect of using Multidirectional Tapered Fin Heat Sinks (MTFHS) to improve the efficiency of PV modules by utilizing aluminum alloy material as heatsinks. The proposed multidirectional design aims to facilitate enhanced heat transfer by promoting airflow in the central area of the PV module. The experimental procedures in our study differ from previous research as we utilized the latest generation of PV modules (405 Wp, PERC Half-cut cells) to fill the discrepancy between laboratory-based investigations and practical applications. Two PV modules were tested for an outdoor parametric analysis under outdoor operating conditions, with solar irradiance recorded from 200 to 1000 W/m2 and ambient temperatures ranging from 26° to 38 °C. Findings indicated that the proposed MTFHS could lower PV module temperatures by 12 ⁰C. Reduced temperature boosts PV module efficiency by 1.53%. Cooling advancements proved vital in contributing to sustainability in PV system installations

    Serum Ceramide Kinase as a Biomarker of Cognitive Functions, and the Effect of Using Two Slimming Dietary Therapies in Obese Middle Aged Females

    Get PDF
    AIM: Highlighting the impact of obesity on mental and cognitive functions using serum ceramide kinase enzyme concentration as a biomarker for cognitive evaluation in the middle aged females, and also targeting to control the obesity and simultaneously postponing the deterioration of the cognitive functions, by implementing two slimming dietary therapies each incorporating different functional ingredients known to boost cognition.SUBJECTS AND METHODS: Ninety six obese middle aged females, divided into two groups volunteered to follow a low caloric balanced diet combined with two bread supplements composed essentially of barley flour and wheat germ mixed with either 5% turmeric, group (A); or with 5% ginger, group (B) for 4 weeks, phase (1); to be followed by the hypocaloric diet alone for another 4 weeks, phase (2).RESULTS: By the end of phase (1), the biochemical analysis showed a positive response of the levels of C-peptide and modified homeostatic model assessment of insulin resistance; also increased levels of the serum ceramide kinase enzyme, coupled with improved cognitive functions tests. Improvement of the relevant metabolic profile, fasting blood glucose, blood pressure and the anthropometric measurements was detected.CONCLUSION: Using dietary therapy supported by special formulas which contain active ingredients succeeded in reducing weight and improving both the metabolic profile and the cognitive functions

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore