185 research outputs found

    Metabolic profiling of HepG2 cells incubated with S(−) and R(+) enantiomers of anti-coagulating drug warfarin

    Get PDF
    Warfarin is a commonly prescribed oral anticoagulant with narrow therapeutic index. It achieves anti-coagulating effects by interfering with the vitamin K cycle. Warfarin has two enantiomers, S(−) and R(+) and undergoes stereoselective metabolism, with the S(−) enantiomer being more effective. We reported the intracellular metabolic profile in HepG2 cells incubated with S(−) and R(+) warfarin by GCMS. Chemometric method PCA was applied to analyze the individual samples. A total of 80 metabolites which belong to different categories were identified. Two batches of experiments (with and without the presence of vitamin K) were designed. In samples incubated with S(−) and R(+) warfarin, glucuronic acid showed significantly decreased in cells incubated with R(+) warfarin but not in those incubated with S(−) warfarin. It may partially explain the lower bio-activity of R(+) warfarin. And arachidonic acid showed increased in cells incubated with S(−) warfarin but not in those incubated with R(+) warfarin. In addition, a number of small molecules involved in γ-glutamyl cycle displayed ratio variations. Intracellular glutathione detection further validated the results. Taken together, our findings provided molecular evidence on a comprehensive metabolic profile on warfarin-cell interaction which may shed new lights on future improvement of warfarin therapy

    EuroGuiDerm Guideline on the systemic treatment of Psoriasis vulgaris - Part 2 : specific clinical and comorbid situations

    Get PDF
    This evidence- and consensus-based guideline on the treatment of psoriasis vulgaris was developed following the EuroGuiDerm Guideline and Consensus Statement Development Manual. The second part of the guideline provides guidance for specific clinical and comorbid situations such as treating psoriasis vulgaris patient with concomitant psoriatic arthritis, concomitant inflammatory bowel disease, a history of malignancies or a history of depression or suicidal ideation. It further holds recommendations for concomitant diabetes, viral hepatitis, disease affecting the heart or the kidneys as well as concomitant neurological disease. Advice on how to screen for tuberculosis and recommendations on how to manage patients with a positive tuberculosis test result are given. It further covers treatment for pregnant women or patients with a wish for a child in the near future. Information on vaccination, immunogenicity and systemic treatment during the COVID-19 pandemic is also provided.Peer reviewe

    Nicotinic acetylcholine receptor variants associated with susceptibility to chronic obstructive pulmonary disease: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Only 10-15% of smokers develop chronic obstructive pulmonary disease (COPD) which indicates genetic susceptibility to the disease. Recent studies suggested an association between COPD and polymorphisms in <it>CHRNA </it>coding subunits of nicotinic acetylcholine receptor. Herein, we performed a meta-analysis to clarify the impact of <it>CHRNA </it>variants on COPD.</p> <p>Methods</p> <p>We searched Web of Knowledge and Medline from 1990 through June 2011 for COPD gene studies reporting variants on <it>CHRNA</it>. Pooled odds ratios (ORs) were calculated using the major allele or genotype as reference group.</p> <p>Results</p> <p>Among seven reported variants in <it>CHRNA</it>, rs1051730 was finally analyzed with sufficient studies. Totally 3460 COPD and 11437 controls from 7 individual studies were pooled-analyzed. A-allele of rs1051730 was associated with an increased risk of COPD regardless of smoking exposure (pooled OR = 1.26, 95% CI 1.18-1.34, p < 10<sup>-5</sup>). At the genotypic level, the ORs gradually increased per A-allele (OR = 1.27 and 1.50 for GA and AA respectively, p < 10<sup>-5</sup>). Besides, AA genotype exhibited an association with reduced FEV1% predicted (mean difference 3.51%, 95%CI 0.87-6.16%, p = 0.009) and increased risk of emphysema (OR 1.93, 95%CI 1.29-2.90, p = 0.001).</p> <p>Conclusions</p> <p>Our findings suggest that rs1051730 in <it>CHRNA </it>is a susceptibility variant for COPD, in terms of both airway obstruction and parenchyma destruction.</p

    SmokeHaz: systematic reviews and meta-analyses of the effects of smoking on respiratory health

    Get PDF
    Background: Smoking tobacco increases the risk of respiratory disease in adults and children, but communicating the magnitude of these effects in a scientific manner that is accessible and usable by public and policymakers presents a challenge. We have therefore summarised scientific data on the impact of smoking on respiratory diseases to provide the content for a unique resource, SmokeHaz. Methods: We conducted systematic reviews and meta-analyses of longitudinal studies (published to 2013) identified from electronic databases, grey literature, and experts. Random effect meta-analyses were used to pool the findings. Results: We included 216 papers. Among adult smokers, we confirmed substantially increased risks of lung cancer (Risk Ratio (RR) 10.92, 95% CI 8.28-14.40; 34 studies), COPD (RR 4.01, 95% CI 3.18-5.05; 22 studies) and asthma (RR 1.61, 95% CI 1.07-2.42; 8 studies). Exposure to passive smoke significantly increased the risk of lung cancer in adult non-smokers; and increased the risks of asthma, wheeze, lower respiratory infections, and reduced lung function in children. Smoking significantly increased the risk of sleep apnoea, and asthma exacerbations in adult and pregnant populations; and active and passive smoking increased the risk of tuberculosis. Conclusions: These findings have been translated into easily digestible content and published on the SmokeHaz website (www.smokehaz.eu)

    Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health

    Get PDF
    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging

    Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection

    Get PDF
    Keratinocytes constitute the majority of cells in the skin’s epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45−, CD326−, CD34+) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin−) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67+ nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S. mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those observed in epidermal wound healing.This project was funded by a Project Grant from the Wellcome Trust, UK, awarded to APM (Grant number: 092745/Z/10/Z) which supported CDB and CTP. DES was funded by COLFUTURO, Colombia and the Departamento Administrativo de Ciencia, Tecnologia e Innovacion de la Republica de Colombia (COLCIENCIAS), Colombia. CDB was also supported by a University of York, UK, Summer Studentship Award for Research Associates and RH was funded by a Wellcome Trust, UK, Biomedical Vacation Scholarship

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore