720 research outputs found

    p19( Arf) Suppresses Growth, Progression, and Metastasis of Hras-Driven Carcinomas through p53-Dependent and -Independent Pathways

    Get PDF
    Ectopic expression of oncogenes such as Ras induces expression of p19(Arf), which, in turn, activates p53 and growth arrest. Here, we used a multistage model of squamous cell carcinoma development to investigate the functional interactions between Ras, p19(Arf), and p53 during tumor progression in the mouse. Skin tumors were induced in wild-type, p19(Arf)-deficient, and p53-deficient mice using the DMBA/TPA two-step protocol. Activating mutations in Hras were detected in all papillomas and carcinomas examined, regardless of genotype. Relative to wild-type mice, the growth rate of papillomas was greater in p19(Arf)-deficient mice, and reduced in p53-deficient mice. Malignant conversion of papillomas to squamous cell carcinomas, as well as metastasis to lymph nodes and lungs, was markedly accelerated in both p19 (Arf)- and p53-deficient mice. Thus, p19(Arf) inhibits the growth rate of tumors in a p53-independent manner. Through its regulation of p53, p19(Arf) also suppresses malignant conversion and metastasis. p53 expression was upregulated in papillomas from wild-type but not p19( Arf)-null mice, and p53 mutations were more frequently seen in wild-type than in p19( Arf)-null carcinomas. This indicates that selection for p53 mutations is a direct result of signaling from the initiating oncogenic lesion, Hras, acting through p19(Arf)

    Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers

    Get PDF
    Genetic diversity of 60 Hevea genotypes, consisting of Asiatic, Amazonian, African and IAC clones, and pertaining to the genetic breeding program of the Agronomic Institute (IAC), Brazil, was estimated. Analyses were based on phenotypic multivariate parameters and microsatellites. Five agronomic descriptors were employed in multivariate procedures, such as Standard Euclidian Distance, Tocher clustering and principal component analysis. Genetic variability among the genotypes was estimated with 68 selected polymorphic SSRs, by way of Modified Rogers Genetic Distance and UPGMA clustering. Structure software in a Bayesian approach was used in discriminating among groups. Genetic diversity was estimated through Nei's statistics. The genotypes were clustered into 12 groups according to the Tocher method, while the molecular analysis identified six groups. In the phenotypic and microsatellite analyses, the Amazonian and IAC genotypes were distributed in several groups, whereas the Asiatic were in only a few. Observed heterozygosity ranged from 0.05 to 0.96. Both high total diversity (HT' = 0.58) and high gene differentiation (G st' = 0.61) were observed, and indicated high genetic variation among the 60 genotypes, which may be useful for breeding programs. The analyzed agronomic parameters and SSRs markers were effective in assessing genetic diversity among Hevea genotypes, besides proving to be useful for characterizing genetic variability

    Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals

    Get PDF
    Artificial photosynthesis represents one of the great scientific challenges of the 21st century, offering the possibility of clean energy through water photolysis and renewable chemicals through CO2 utilisation as a sustainable feedstock. Catalysis will undoubtedly play a key role in delivering technologies able to meet these goals, mediating solar energy via excited generate charge carriers to selectively activate molecular bonds under ambient conditions. This review describes recent synthetic approaches adopted to engineer nanostructured photocatalytic materials for efficient light harnessing, charge separation and the photoreduction of CO2 to higher hydrocarbons such as methane, methanol and even olefins

    The ubiquitin proteasome system in neuropathology

    Get PDF
    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed

    Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes

    Full text link
    Photobiocatalysts are constituted by a semiconductor with or without a light harvester that activates an enzyme. A logical source of inspiration for the development of photobiocatalysts has been natural photosynthetic centers. In photobiocatalysis, the coupling of the semiconductor and the enzyme frequently requires a natural cofactor and a relay transferring charge carriers from the semiconductor. The most widely studied photobiocatalysts so far make use of conduction band electrons of excited semiconductors to promote enzymatic reductions mediated by NAD(+)/NADH and an electron relay. The present review presents the state of the art in the field and has been organized based on the semiconductor and the reaction type including oxidations, hydrogen generation, and CO2 reduction. The possibility of direct enzyme activation by the semiconductor and the influence of the nature of mediator are also discussed as well as the use of mimics of the enzyme active center in combination with the semiconductor. The final section summarizes the state of the art of photobiocatalysis and comments on our view on future developments of the field.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) is gratefully acknowledged. J.A.M.-A. acknowledges the assistance of the CSIC for the award of a Postdoctoral JAE-Doc contract co-financed by the European Social Fund.MaciĂĄ AgullĂł, JA.; Corma CanĂłs, A.; GarcĂ­a GĂłmez, H. (2015). Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes. Chemistry - A European Journal. 21(31):10940-10959. https://doi.org/10.1002/chem.201406437S1094010959213

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→Ό+Ό−Ό+Ό− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→Ό+Ό− decay as normalization, the branching fraction B(η→Ό+Ό−Ό+Ό−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2ÎŒ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Performance of the local reconstruction algorithms for the CMS hadron calorimeter with Run 2 data

    Get PDF
    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    First measurement of the top quark pair production cross section in proton-proton collisions at s \sqrt{s} = 13.6 TeV

    Get PDF
    The first measurement of the top quark pair (ttÂŻ) production cross section in proton-proton collisions at s√ = 13.6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1.21 fb−1, are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive ttÂŻ production cross section of 881 ± 23 (stat + syst) ± 20 (lumi) pb is measured, in agreement with the standard model prediction of 924+32−40 pb
    • 

    corecore