1,636 research outputs found

    On the tension between growth rate and CMB data

    Get PDF
    We analyze the claimed tension between redshift space distorsions measurements of f(z)σ8(z)f(z)\sigma_8(z) and the predictions of standard Λ\LambdaCDM (Planck 2015 and 2018) cosmology. We consider a dataset consisting of 17 data points extending up to redshift z=1.52z=1.52 and corrected for the Alcock-Paczynski effect. Thus, calculating the evolution of the growth factor in a wwCDM cosmology, we find that the tension for the best fit parameters ww, Ωm\Omega_m and σ8\sigma_8 with respect to the Planck 2018 Λ\LambdaCDM parameters is below 2σ2\sigma in all the marginalized confidence regions.Comment: 6 pages, 4 figures. Final version to appear in Eur. Phys. J.

    Resonances in a periodically driven bosonic system

    Full text link
    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localisation. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a non-interacting model, characterised by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems

    Bandwidth-resonant Floquet states in honeycomb optical lattices

    Full text link
    We investigate, within Floquet theory, topological phases in the out-of-equilibrium system that consists of fermions in a circularly shaken honeycomb optical lattice. We concentrate on the intermediate regime, in which the shaking frequency is of the same order of magnitude as the band width, such that adjacent Floquet bands start to overlap, creating a hierarchy of band inversions. It is shown that two-phonon resonances provide a topological phase that can be described within the Bernevig-Hughes-Zhang model of HgTe quantum wells. This allows for an understanding of out-of-equilibrium topological phases in terms of simple band inversions, similar to equilibrium systems

    Thermodynamic signatures of edge states in topological insulators

    Full text link
    Topological insulators are states of matter distinguished by the presence of symmetry protected metallic boundary states. These edge modes have been characterised in terms of transport and spectroscopic measurements, but a thermodynamic description has been lacking. The challenge arises because in conventional thermodynamics the potentials are required to scale linearly with extensive variables like volume, which does not allow for a general treatment of boundary effects. In this paper, we overcome this challenge with Hill thermodynamics. In this extension of the thermodynamic formalism, the grand potential is split into an extensive, conventional contribution, and the subdivision potential, which is the central construct of Hill's theory. For topologically non-trivial electronic matter, the subdivision potential captures measurable contributions to the density of states and the heat capacity: it is the thermodynamic manifestation of the topological edge structure. Furthermore, the subdivision potential reveals phase transitions of the edge even when they are not manifested in the bulk, thus opening a variety of new possibilities for investigating, manipulating, and characterizing topological quantum matter solely in terms of equilibrium boundary physics.Comment: 9 pages, 3 figure

    Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor

    Full text link
    We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral super- conductivity, which could be observed in layered materials under stress. We also employ the effect to explain some puzzling questions related to the location of zero-energy Majorana modes

    Genesis of the Floquet Hofstadter butterfly

    Full text link
    We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Hofstadter spectrum is analyzed for different regimes of the driving frequency. For lower frequencies, resonances of various copies of the spectrum lead to intricate formations of topological gaps. In the Landau-level regime, new wing-like gaps emerge upon reducing the driving frequency, thus revealing the possibility of dynamically tuning the formation of the Hofstadter butterfly. In this regime, an effective model may be analytically derived, which allows us to retrace the energy levels that exhibit avoided crossings and ultimately lead to gap structures with a wing-like shape. At high frequencies, we find that gaps open for various fluxes at E=0E=0, and upon increasing the amplitude of the driving, gaps also close and reopen at other energies. The topological invariants of these gaps are calculated and the resulting spectrum is elucidated. We suggest opportunities for experimental realization and discuss similarities with Landau-level structures in non-driven systems.Comment: 8 pages, 4 figure

    Derecho de asilo y adopción internacional

    Get PDF
    Traballo fin de grao (UDC.DER). Dereito. Curso 2015/201
    • …
    corecore