41 research outputs found

    Dialysis-assisted fiber optic spectroscopy for in situ biomedical sensing

    Get PDF
    A miniature fiber optic spectrometer enclosed within a semipermeable (dialysis) membrane is proposed for in vivo interstitial sensing applications. The semipermeable membrane acts as a molecular filter, allowing only small molecules to pass through to the sampling volume. This filtering, in principle, should enable continuous in vivo drug sensing, removing the necessity for complex microdialysis systems. We use a biological phantom to examine the reliable detection of a fluorescence signal from small dye molecules in the presence of large fluorophores and scatterers. We find that spectral artefacts arising from scatterers and large fluorophores are substantially suppressed, simplifying the spectral analysis. In addition, the measured sampling rate of 157 s is superior to existing in vivo tissue assaying techniques such as microdialysis, which can take tens of minutes. (c) 2006 Society of Photo- Optical Instrumentation Engineers

    Measurement properties of the Minimal Insomnia Symptom Scale (MISS) in an elderly population in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insomnia is common among elderly people and associated with poor health. The Minimal Insomnia Symptom Scale (MISS) is a three item screening instrument that has been found to be psychometrically sound and capable of identifying insomnia in the general population (20-64 years). However, its measurement properties have not been studied in an elderly population. Our aim was to test the measurement properties of the MISS among people aged 65 + in Sweden, by replicating the original study in an elderly sample.</p> <p>Methods</p> <p>Data from a cross-sectional survey of 548 elderly individuals were analysed in terms of assumptions of summation of items, floor/ceiling effects, reliability and optimal cut-off score by means of ROC-curve analysis and compared with self-reported insomnia criteria.</p> <p>Results</p> <p>Corrected item-total correlations ranged between 0.64-0.70, floor/ceiling effects were 6.6/0.6% and reliability was 0.81. ROC analysis identified the optimal cut-off score as ≄7 (sensitivity, 0.93; specificity, 0.84; positive/negative predictive values, 0.256/0.995). Using this cut-off score, the prevalence of insomnia in the study sample was 21.7% and most frequent among women and the oldest old.</p> <p>Conclusions</p> <p>Data support the measurement properties of the MISS as a possible insomnia screening instrument for elderly persons. This study make evident that the MISS is useful for identifying elderly people with insomnia-like sleep problems. Further studies are needed to assess its usefulness in identifying clinically defined insomnia.</p

    Scientific rationale for Uranus and Neptune <i>in situ</i> explorations

    Get PDF
    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∌70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission

    ESD protection elements during HBM stress tests - further numerical and experimental results

    No full text
    Correlation problems for HBM-ESD testing result from the complex interaction between device and tester. The HBM stress of different wellcharacterized testers is applied to protection elements. By means of circuit simulations and insitu measurements, snapback and second breakdown during HBM are investigated. For fast transient events, a new transmission line approach of the tester improves the correlation between experiment and simulation

    Continuous microbial fuel cells convert carbohydrates to electricity

    No full text
    Microbial fuel cells which are operated in continuous mode are more suitable for practical applications than fed batch ones. Three influent types containing carbohydrates were tested, i.e. a glucose medium, a plant extract and artificial wastewater. The anode reactor compartment yielding the best results was a packed bed reactor containing graphite granules. While in non-mediated batch systems power outputs up to 479 W m+3 of anode compartment could be attained; in continuous mode the power outputs were limited to 49 W m+3. Cyclic voltammetry was performed to determine the potential of the in-situ synthesized bacterial redox mediators. Addition of mediators with a potential similar to the bacterial potential did not significantly alter the MFC power output, indicating a limited influence of soluble mediators for continuous microbial fuel cells. Maximum coulombic and energy conversion efficiencies were, for the continuous microbial fuel cell operating on plant extract at a loading rate of 1 kg COD m+3 of anode compartment per day, 50.3% and 26.0% respectively. Keywords Biofuel cell; glucose; sucrose; flow through; wastewater; plant sa

    Double Snapback in Soi Nmosfets and its Application for Soi Esd Protection

    No full text
    This paper reports on a newly discovered phenomenon of double snapback observed in SOI nMOSFET's. An extensive experimental analysis of this phenomenon and a tentative model are presented. It will be shown that based on this double-snapback phenomenon, perspectives are offered towards a new electrostatic discharge (ESD) protection concept for SOI technologies

    The Esd Protection Mechanisms and the Related Failure Modes and Mechanisms Observed in Soi Snapback Nmosfets

    No full text
    The objective of this paper is to discuss the characteristics of SOI1 nMOSFET's that can be exploited to clamp HBM(2) ESD(3) stresses and to explain the related failure modes and mechanism observed in these devices. The influence on the HBM ESD protection capability of the first order main parameter: the nMOSFET gate length is investigated. The ESD protection capability for both positive and negative polarity HBM stresses is elaborated and compared. The ESD clamping and device failure mechanisms limiting the ESD protection performance are identified
    corecore