2,303 research outputs found

    Unusual nanostructures of "lattice matched" InP on AlInAs

    Get PDF
    We show that the morphology of the initial monolayers of InP on Al0.48In0.52As grown by metalorganic vapor-phase epitaxy does not follow the expected layer-by-layer growth mode of lattice-matched systems, but instead develops a number of low-dimensional structures, e.g., quantum dots and wires. We discuss how the macroscopically strain-free heteroepitaxy might be strongly affected by local phase separation/alloying-induced strain and that the preferred aggregation of adatom species on the substrate surface and reduced wettability of InP on AlInAs surfaces might be the cause of the unusual (step) organization and morpholog

    Tuning InP self-assembled quantum structures to telecom wavelength: A versatile original InP(As) nanostructure "workshop"

    Get PDF
    The influence of hydride exposure on previously unreported self-assembled InP(As) nanostructures is investigated, showing an unexpected morphological variability with growth parameters, and producing a large family of InP(As) nanostructures by metalorganic vapour phase epitaxy, from dome and ring-like structures to double dot in a ring ensembles. Moreover, preliminary microphotoluminescence data are indicating the capped rings system as an interesting candidate for single quantum emitters at telecom wavelengths, potentially becoming a possible alternative to InAs QDs for quantum technology and telecom applications

    Single pairs of time-bin-entangled photons

    Get PDF
    Time-bin-entangled photons are ideal for long-distance quantum communication via optical fibers. Here we present a source where, even at high creation rates, each excitation pulse generates, at most, one time-bin-entangled pair. This is important for the accuracy and security of quantum communication. Our site-controlled quantum dot generates single polarization-entangled photon pairs, which are then converted, without loss of entanglement strength, into single time-bin-entangled photon pairs

    Semiconductor nanostructures engineering: Pyramidal quantum dots

    Full text link
    Pyramidal quantum dots (QDs) grown in inverted recesses have demonstrated over the years an extraordinary uniformity, high spectral purity and strong design versatility. We discuss recent results, also in view of the Stranski-Krastanow competition and give evidence for strong perspectives in quantum information applications for this system. We examine the possibility of generating entangled and indistinguishable photons, together with the need for the implementation of a, regrettably still missing, strategy for electrical control

    Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade

    Get PDF
    The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore