28 research outputs found

    Juridic Origins of Representation I

    Get PDF

    Prayer in Public Schools

    Get PDF

    Prayer in Public Schools

    Get PDF

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Juridic Origins of Representation II

    Get PDF

    Juridic Origins of Representation I

    No full text

    Catholic Politeia II

    No full text

    Catholic Politeia I

    Get PDF

    The development of a scale of the Guttman Type for the assessment of mobility disability in multiple sclerosis

    Get PDF
    Objective: The aim of the study was to develop a valid and reliable unidimensional scale of the Guttman type for the assessment of mobility disability in multiple sclerosis (MS). Subjects: Sixty-eight subjects with a definite diagnosis of MS participated.They were attending as outpatients at a MS unit at a District General Hospital. Thirty had the primary progressive pattern of disease, and 38 had the relapsing-remitting pattern. Methods: Formal assessments used for neurological disability were inspected, and 14 test items of gross motor function were extracted and ordered according to two criteria. These were that actions progressed from lying, to sitting, to standing and walking tasks, and that they progressed from broader to narrower bases of support. All subjects carried out all test items which were scored as ‘pass’ or ‘fail’. Analysis: Data were tested for internal consistency, reliability, inter item correlation, reproducibility and scalability. On the basis of the results, the items were re-ordered in rank, and reduced to eleven tests. The eleven item scale was re-analysed. Results: Results showed that the scale had an internal consistency of 0.88 (alpha coefficient) and a coefficient of reproducibility (CR) of 0.95 and above for both MS subject groups. The coefficient of scalability (CS) for items was 0.78 for primary progressive subjects and 0.74 for the relapsing-remitting group. Reliability ranged from good (kappa = 0.49) for one item, to perfect for six items. Conclusion: The scale was demonstrated to be a hierarchical scale of the Guttman type exhibiting homogeneous unidimensionality and good reliability. The high CR indicated that scores may be summed, and the very acceptable levels of CS indicated that the cumulative scores are meaningful within the defined concept of hierarchy used in this study

    The ATLAS semiconductor tracker end-cap module

    No full text
    The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required readout speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3:3 ms buffer. The highest anticipated dose after 10 years operation is 1:4 1014 cm2 in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area �70 cm2, each having 2 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X0, while coping with up to 7W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e equivalent noise charge (ENC) rising to only 1800e ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 mm ðrfÞ resolution perpendicular to the strip directions or 580 mm radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40–50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved
    corecore