1,514 research outputs found

    Appearances can be deceiving: How naturalistic changes to target appearance impact on lineup-based decision-making

    Get PDF
    The present study examined the influence of appearance, procedure and position on identification decisions, post-decisional confidence ratings and estimates of discrimination and confidence-specific accuracy. Regarding appearance, the study examined the combined influence of three naturalistic changes that occur day-to-day (i.e. a reduction in cranial hair length, the removal of stubble, and a change of clothing), two of which have not been considered before in a lineup-decision context. Participants (N = 350) completed four experimental lineups which involved: viewing a target person, completing a brief distractor task, and making an identification decision and a post-decisional confidence rating from a photographic lineup. Participants were randomly allocated to complete simultaneous or sequential lineups, with appearance (no change, change), position (early, late) and target (present, absent) systematically varied across the four trials. Appearance affected all dependent measures and was particularly influential in target-present lineups. Naturalistic changes to target appearance reliably decreased correct identification rates, confidence in correct identifications, discrimination accuracy, and confidence-specific accuracy. Procedure and position, by contrast, had a more limited impact. Of concern for the criminal justice system, neither procedure nor position manipulations offset any reductions in lineup-decision accuracy when target appearance changed

    Delivering transformative action in paediatric pain: a <i>Lancet Child &amp; Adolescent Health</i> Commission

    Get PDF
    Every infant, child, and adolescent will experience pain at times throughout their life. Childhood pain ranges from acute to chronic, and includes procedural, disease-related, breakthrough, and other types of pain. Despite its ubiquity, pain is a major challenge for individuals, families, health-care professionals, and societies. As a private mental experience, pain is often hidden and can go undiscussed or ignored. Undertreated, unrecognised, or poorly managed pain in childhood leads to important and long-lasting negative consequences that continue into adulthood, including continued chronic pain, disability, and distress. This undertreatment of pain should not continue, as there are available tools, expertise, and evidence to provide better treatment for childhood pain

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    Abundances of Iron-Binding Photosynthetic and Nitrogen-Fixing Proteins of Trichodesmium Both in Culture and In Situ from the North Atlantic

    Get PDF
    Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean

    HAWC+/SOFIA Multiwavelength Polarimetric Observations of OMC-1

    Get PDF
    We report new polarimetric and photometric maps of the massive star-forming region OMC-1 using the HAWC+ instrument on the Stratospheric Observatory for Infrared Astronomy. We present continuum polarimetric and photometric measurements of this region at 53, 89, 154, and 214 ÎŒm at angular resolutions of 5'', 8'', 14'', and 19'' for the four bands, respectively. The photometric maps enable the computation of improved spectral energy distributions for the region. We find that at the longer wavelengths, the inferred magnetic field configuration matches the "hourglass" configuration seen in previous studies, indicating magnetically regulated star formation. The field morphology differs at the shorter wavelengths. The magnetic field inferred at these wavelengths traces the bipolar structure of the explosive Becklin–Neugebauer/Kleinman–Low outflow emerging from OMC-1 behind the Orion Nebula. Using statistical methods to estimate the field strength in the region, we find that the explosion dominates the magnetic field near the center of the feature. Farther out, the magnetic field is close to energetic equilibrium with the ejecta and may be providing confinement to the explosion. The correlation between polarization fraction and the local polarization angle dispersion indicates that the depolarization as a function of unpolarized intensity is a result of intrinsic field geometry as opposed to decreases in grain alignment efficiency in denser regions

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmÀn Schizophrenia Working Grp Psychiat jÀsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z∌0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z∌0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    • 

    corecore