434 research outputs found

    Continent elevation, mountains, and erosion : freeboard implications

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B05410, doi:10.1029/2008JB006176.To the simplest approximation, Earth's continental crust is a floating aggregate on the planet's surface that is first attracted to subduction zones and, upon arrival, thickened by mountain building (then producing some extension). Thickened regions are thinned again by erosion. A comparison between 65 Ma and the present shows that the modern state is significantly more mountainous. An estimated average continental elevation increase relative to average ocean floor depth of about 54 m and sea level decrease relative to the ocean floor of about 102 m add up to a 156-m increase of continent elevation over sea level since 65 Ma. Both are affected most strongly by the roughly 1.7% continent surface area decrease caused by Cenozoic mountain building. This includes contributions from erosion. Volumes of sediments in deltas and submarine fans indicate an average thickness of 371 m deposited globally in the ocean basins since 65 Ma. This relatively large change of continent area over a short span of Earth history has significant consequences. Extrapolating, if continent area change exceeded 5% in the past, either severe erosion or flooded continents occurred. If continent elevation (freeboard) remains at the present value of a few hundred meters, the past continent-ocean area ratio might have been quite different, depending on earlier volumes of continental crust and water. We conclude that, along with the ages of ocean basins, continental crustal thickening exerts a first-order control on the global sea level over hundreds of million years

    Between loss and restoration:The role of liminality in advancing theories of grief and bereavement

    Get PDF
    A recent national survey of bereaved partners found high levels of complicated grief and psychological distress, with evidence that loneliness and isolation may contribute to these outcomes. However, the mechanisms of action for this have not been explored. To advance grief theory this paper reports analysis of the survey free-text data to examine the relationship between social support and emotional responses to bereavement. Individuals bereaved of a civil partner or spouse 6-10 months previously were identified through death registration data. 569/1945 (29 %) completed surveys were received. Of those, 311 participants (55 %) provided responses to two free-text questions which asked about their 'feelings since the death of their partner or spouse', and 'about the support around' them. Data were analysed using corpus-assisted discourse analysis and the discourse dynamics approach for figurative language. Participants described diverse emotional responses to the bereavement (e.g. sadness, anger, denial, acceptance), and the value of formal and informal bereavement support. Although many of the experiences described are accounted for in existing grief theory, some participants described a liminal experience not recognised within these theories. They felt trapped, unable to engage with loss or restoration, and unable to move forward as their planned future no longer existed. They sought out 'communitas' (solidarity in experiences), but often found support from their social networks had diminished. Metaphors were used to describe this liminality, with partner grief expressed as a dark agentic force, a monster, an abyss, and as water. The findings of this study offer original insights into experiences and trajectories of bereavement, and our understandings of prolonged or complicated grief. A novel model 'Between Loss and Restoration' is presented to include these experiences. Recognition of the place for liminality within the spectrum of grief experiences could enhance grief literacy and improve formal and informal bereavement support provision.</p

    Developing Dementia-Friendly Tourism Destinations: An Exploratory Analysis

    Get PDF
    Dementia is emerging as a global issue. Increases in life expectancy create an older population structure with accompanying health needs but also high lifestyle expectations. For example existing generations have come to expect to be able to participate in leisure and tourism activities in later life, which can be constrained by the onset of dementia. Leading healthy lifestyles and engaging in tourism activities are viewed as fundamental to remaining active and contributing to slowing the progress of dementia. This study is the first to examine the challenges and implications of the growing scale of dementia and the business opportunities this may create for destinations wishing to achieve dementia-friendly status. The paper reports results from an initial scoping study with tourism businesses in a coastal resort in the United Kingdom with such ambitions to assess the nature of the issues that arose from a series of face-to-face interviews

    Pulsed subduction accretion and tectonic erosion reconstructed since 2.5 Ma from the tephra record offshore Costa Rica

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q09016, doi:10.1029/2005GC000963.Tephra layers recovered by Ocean Drilling Program from the forearc and trench regions offshore the Nicoya Peninsula of Costa Rica allow the temporal evolution of the volcanic arc to be reconstructed since 2.5 Ma. Major and trace element analyses by microprobe methods reveal a dominant tholeiitic character and a provenance in the Costa Rican area. The tephra show long-term coherent variability in geochemistry. One tephra dated at 1.45 Ma shows minimum values in ɛ Nd and maximum Li/Y consistent with very high degrees of sediment recycling at this time. However, overall Li/Y and ÎŽ7Li increase with SiO2 content, suggesting addition of heavy Li through forearc tectonic erosion and crustal assimilation. Peak values in ÎŽ7Li starting at 1.45 Ma and lasting ∌0.5 m.y. indicate enhanced tectonic erosion of the forearc possibly caused by subduction of a seamount at 1.45 Ma. The tephra record indicates significant temporal variability in terms of sediment subduction, reconciling the geologic evidence for long-term tectonic erosion and geochemical evidence for recent sediment accretion in the modern Central American arc.Financial support for the analytical work was gratefully received from JOI-USSAC. The lithium isotope work was supported in part by National Science Foundation grant OCE-990554 to L.H.C

    Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): B03204, doi:10.1029/2007JB005208.The Talkeetna arc is one of two intraoceanic arcs where much of the section from the upper mantle through the volcanic carapace is well exposed. We reconstruct the vertical section of the Talkeetna arc by determining the (re)crystallization pressures at various structural levels. The thermobarometry shows that the tonalites and quartz diorites intruded at ∌5–9 km into a volcanic section estimated from stratigraphy to be 7 km thick. The shallowest, Tazlina and Barnette, gabbros crystallized at ∌17–24 km; the Klanelneechena Klippe crystallized at ∌24–26 km; and the base of the arc crystallized at ∌35 km depth. The arc had a volcanic:plutonic ratio of ∌1:3–1:4. However, many or most of the felsic plutonic rocks may represent crystallized liquids rather than cumulates so that the liquid:cumulate ratio might be 1:2 or larger. The current 5- to 7-km structural thickness of the plutonic section of the arc is ∌15–30% of the original 23- to 28-km thickness. The bulk composition of the original Talkeetna arc section was ∌51–58 wt % SiO2.Funded by NSF EAR-9910899

    Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study.

    Get PDF
    OBJECTIVE: To derive and validate a risk prediction algorithm to estimate hospital admission and mortality outcomes from coronavirus disease 2019 (covid-19) in adults. DESIGN: Population based cohort study. SETTING AND PARTICIPANTS: QResearch database, comprising 1205 general practices in England with linkage to covid-19 test results, Hospital Episode Statistics, and death registry data. 6.08 million adults aged 19-100 years were included in the derivation dataset and 2.17 million in the validation dataset. The derivation and first validation cohort period was 24 January 2020 to 30 April 2020. The second temporal validation cohort covered the period 1 May 2020 to 30 June 2020. MAIN OUTCOME MEASURES: The primary outcome was time to death from covid-19, defined as death due to confirmed or suspected covid-19 as per the death certification or death occurring in a person with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the period 24 January to 30 April 2020. The secondary outcome was time to hospital admission with confirmed SARS-CoV-2 infection. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance, including measures of discrimination and calibration, was evaluated in each validation time period. RESULTS: 4384 deaths from covid-19 occurred in the derivation cohort during follow-up and 1722 in the first validation cohort period and 621 in the second validation cohort period. The final risk algorithms included age, ethnicity, deprivation, body mass index, and a range of comorbidities. The algorithm had good calibration in the first validation cohort. For deaths from covid-19 in men, it explained 73.1% (95% confidence interval 71.9% to 74.3%) of the variation in time to death (R2); the D statistic was 3.37 (95% confidence interval 3.27 to 3.47), and Harrell's C was 0.928 (0.919 to 0.938). Similar results were obtained for women, for both outcomes, and in both time periods. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths within 97 days was 75.7%. People in the top 20% of predicted risk of death accounted for 94% of all deaths from covid-19. CONCLUSION: The QCOVID population based risk algorithm performed well, showing very high levels of discrimination for deaths and hospital admissions due to covid-19. The absolute risks presented, however, will change over time in line with the prevailing SARS-C0V-2 infection rate and the extent of social distancing measures in place, so they should be interpreted with caution. The model can be recalibrated for different time periods, however, and has the potential to be dynamically updated as the pandemic evolves

    Protocol for the development and evaluation of a tool for predicting risk of short-term adverse outcomes due to COVID-19 in the general UK population

    Get PDF
    Introduction Novel coronavirus 2019 (COVID-19) has propagated a global pandemic with significant health, economic and social costs. Emerging emergence has suggested that several factors may be associated with increased risk from severe outcomes or death from COVID-19. Clinical risk prediction tools have significant potential to generate individualised assessment of risk and may be useful for population stratification and other use cases. Methods and analysis We will use a prospective open cohort study of routinely collected data from 1205 general practices in England in the QResearch database. The primary outcome is COVID-19 mortality (in or out-of-hospital) defined as confirmed or suspected COVID-19 mentioned on the death certificate, or death occurring in a person with SARS-CoV-2 infection between 24 th January and 30 th April 2020. Our primary outcome in adults is COVID-19 mortality (including out of hospital and in hospital deaths). We will also examine COVID-19 hospitalisation in children. Time-to-event models will be developed in the training data to derive separate risk equations in adults (19-100 years) for males and females for evaluation of risk of each outcome within the 3-month follow-up period (24 th January to 30 th April 2020), accounting for competing risks. Predictors considered will include age, sex, ethnicity, deprivation, smoking status, alcohol intake, body mass index, pre-existing medical co-morbidities, and concurrent medication. Measures of performance (prediction errors, calibration and discrimination) will be determined in the test data for men and women separately and by ten-year age group. For children, descriptive statistics will be undertaken if there are currently too few serious events to allow development of a risk model. The final model will be externally evaluated in (a) geographically separate practices and (b) other relevant datasets as they become available. Ethics and dissemination The project has ethical approval and the results will be submitted for publication in a peer-reviewed journal. Strengths and limitations of the study The individual-level linkage of general practice, Public Health England testing, Hospital Episode Statistics and Office of National Statistics death register datasets enable a robust and accurate ascertainment of outcomes The models will be trained and evaluated in population-representative datasets of millions of individuals Shielding for clinically extremely vulnerable was advised and in place during the study period, therefore risk predictions influenced by the presence of some ‘shielding’ conditions may require careful consideratio

    Temporal variability of gas seeps offshore New Zealand: multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin

    Get PDF
    Cold seeps on Opouawe Bank, situated in around 1000 m water depth on the Hikurangi Margin offshore North Island. New Zealand, were investigated using multibeam bathymetry, 75 and 410 kHz sidescan sonar imagery, and 2–8 kHz Chirp sediment echosounder data. Towed video camera observations allowed ground-truthing the various geoacoustic data. At least eleven different seep locations displaying a range of seep activity were identified in the study area. The study area consists of an elongated, northward-widening ridge that is part of the accretionary Hikurangi Margin and is well separated from direct terrigenous input by margin channels surrounding the ridge. The geoacoustic signature of individual cold-seep sites ranged from smooth areas with slightly elevated backscatter intensity resulting from high gas content or the presence of near-surface gas hydrates, to rough areas with widespread patches of carbonates at the seafloor. Five cold seeps also show indications for active gas emissions in the form of acoustic plumes in the water column. Repeated sidescan sonar imagery of the plumes indicates they are highly variable in intensity and direction in the water column, probably reflecting the control of gas emission by tides and currents. Although gas emission appears strongly focused in the Wairarapa area, the actual extents of the cold seep structures are much wider in the subsurface as is shown by sediment echosounder profiles, where large gas fronts were observed
    • 

    corecore