73 research outputs found

    Planar Manipulation via Learning Regrasping

    Full text link
    Regrasping is important for robots to reorient objects in planar manipulation tasks. Different placements of objects can provide robots with alternative grasp configurations, which are used in complex planar manipulation tasks that require multiple pick-rotate-and-place steps due to the constraints of the environment and robot kinematics. In this work, our goal is to generate diverse placements of objects on the plane using deep neural networks. We propose a pipeline with the stages of orientation generation, position refinement, and placement discrimination to obtain accurate and diverse stable placements based on the perception of point clouds. A large-scale dataset is created for training, including simulated placements and contact information between objects and the plane. The simulation results show that our pipeline outperforms the start-of-the-art, achieving an accuracy rate of 90.4% and a diversity rate of 81.3% in simulation on generated placements. Our pipeline is also validated in real-robot experiments. With the generated placements, sequential pick-rotate-and-place steps are calculated for the robot to reorient objects to goal poses that are not reachable within one step. Videos and dataset are available at https://sites.google.com/view/pmvlr2022/

    Driving Control Research for Longitudinal Dynamics of Electric Vehicles with Independently Driven Front and Rear Wheels

    Get PDF
    This paper takes the electric off-road vehicle with separated driven axles as the research object. To solve the longitudinal dynamics driving control problems, vehicle dynamics model, and control strategies were studied and the corresponding simulation was carried out. An 8-DOF vehicle dynamics model with separated driven axles was built. The driving control strategies on the typical roads were put forward. The recognition algorithm of the typical road surfaces based on the wheels’ slip rates was proposed. And the two control systems were designed including the pedal opening degree adjustment control system based on PI algorithm and the interaxle torque distribution control system based on sliding mode control algorithm. The driving control flow of the proposed vehicle combining the pedal adjustment control system with the interaxle torque distribution control system was developed. And the driven control strategies for the typical roads were simulated. Simulation results show that the proposed drive control strategies can adapt to different typical road surfaces, limit the slip rates of the driving wheels within the stable zone, and ensure the vehicle driving safely and stably in accordance with the driver's intention

    Adverse Effects of Simulated Hyper- and Hypo-Phosphatemia on Endothelial Cell Function and Viability

    Get PDF
    Dysregulation of phosphate homeostasis as occurs in chronic kidney disease is associated with cardiovascular complications. It has been suggested that both hyperphosphatemia and hypophosphatemia can cause cardiovascular disease. The molecular mechanisms by which high or low serum phosphate levels adversely affect cardiovascular function are poorly understood. The purpose of this study was to explore the mechanisms of endothelial dysfunction in the presence of non-physiologic phosphate levels.We studied the effects of simulated hyper- and hypophosphatemia in human umbilical vein endothelial cells in vitro. We found both simulated hyperphosphatemia and hypophosphatemia decrease eNOS expression and NO production. This was associated with reduced intracellular calcium, increased protein kinase C β2 (PKCβ2), reduced cell viability, and increased apoptosis. While simulated hyperphosphatemia was associated with decreased Akt/p-Akt, Bcl-xl/Bax ratios, NFkB-p65 and p-Erk abundance, simulated hypophosphatemia was associated with increased Akt/p-Akt and Bcl-xl/Bax ratios and p-Mek, p38, and p-p38 abundance.This is the first demonstration of endothelial dysfunction with hypophosphatemia. Our data suggests that both hyperphosphatemia and hypophosphatemia decrease eNOS activity via reduced intracellular calcium and increased PKCβ2. Hyperphosphatemia also appears to reduce eNOS transcription via reduced signaling through PI3K/Akt/NF-kB and MAPK/NF-kB pathways. On the other hand, hypophosphatemia appears to activate these pathways. Our data provides the basis for further studies to elucidate the relationship between altered phosphate homeostasis and cardiovascular disease. As a corollary, our data suggests that the level of phosphate in the culture media, if not in the physiologic range, may inadvertently affect experimental results

    UPLC Q-TOF/MS-Based Metabolic Profiling of Urine Reveals the Novel Antipyretic Mechanisms of Qingkailing Injection in a Rat Model of Yeast-Induced Pyrexia

    Get PDF
    Fever is one of the most common clinical symptoms of many diseases. Qingkailing (QKL) injection is widely used in China as a clinical emergency medicine due to its good antipyretic effects. It is a herbal formula which is composed by eight kinds of traditional Chinese medicines (TCM). As a kind of typical multiple constituents and multiple actions of TCM, it is very difficult to elaborate the antipyretic mechanism by conventional pharmacological method. Metabonomics technique provides beneficial tool for this challenge. In this study, an ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS) metabonomics method was developed to explore the changing process of biochemical substances in rats of yeast-induced pyrexia. Partial least squares discriminate analysis (PLS-DA) was used to distinguish the normal control group, the pyrexia model group, and the pyrexia model group treated by QKL injection. The potential biomarkers related to pyrexia were confirmed and identified. MetPA was used to find the possible metabolic pathways. The results indicated that the antipyretic effect of QKL injection on yeast-induced pyrexia rats was performed by repairing the perturbed metabolism of amino acids

    Electrical 180o switching of N\'eel vector in spin-splitting antiferromagnet

    Full text link
    Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultra-dense and ultra-fast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180o switching of N\'eel vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite N\'eel vectors as binary "0" and "1". However, the state-of-art antiferromagnetic switching mechanisms have long been limited for 90o or 120o switching of N\'eel vector, which unavoidably require multiple writing channels that contradicts ultra-dense integration. Here, we propose a deterministic switching mechanism based on spin-orbit torque with asymmetric energy barrier, and experimentally achieve electrical 180o switching of spin-splitting antiferromagnet Mn5Si3. Such a 180o switching is read out by the N\'eel vector-induced anomalous Hall effect. Based on our writing and readout methods, we fabricate an antiferromagnet device with electrical-controllable high and low resistance states that accomplishes robust write and read cycles. Besides fundamental advance, our work promotes practical spin-splitting antiferromagnetic devices based on spin-splitting antiferromagnet.Comment: 19 pages, 4 figure

    Discovery of a high-altitude ecotype and ancient lineage of Arabidopsis thaliana from Tibet

    Get PDF
    Arabidopsis thaliana (A. thaliana) has long been a model species for dicotyledon study, and was the first flowering plant to get its genome completed sequenced [1]. Although most wild A. thaliana are collected in Europe, several studies have found a rapid A. thaliana west-east expansion from Central Asia [2]. The Qinghai-Tibet Plateau (QTP) is close to Central Asia and known for its high altitude, unique environments and biodiversity [3]. However, no wild-type A. thaliana had been either discovered or sequenced from QTP. Studies on the A. thaliana populations collected under 2000 m asl have shown that the adaptive variations associated with climate and altitudinal gradients [4]. Hence a high-altitude A. thaliana provides a precious natural material to investigate the evolution and adaptation process. Here, we present the genome of a new ecotype of A. thaliana collected in the Gongga County, Tibet (4200 m asl) (Fig. 1a), to demonstrate its evolutionary history and adaptation to highaltitude regions

    A SARS-CoV-2 protein interaction map reveals targets for drug repurposing

    Get PDF
    The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19

    Processing of nanostructured polymers and advanced polymeric based nanocomposites

    Full text link

    A Rule-Based Energy Management Strategy for a Plug-in Hybrid School Bus Based on a Controller Area Network Bus

    No full text
    This paper presents a rule-based energy management strategy for a plug-in hybrid school bus (PHSB). In order to verify the effectiveness and rationality of the proposed energy management strategy, the powertrain and control models were built with MATLAB/Simulink. The PHSB powertrain model includes an engine model, ISG (integrated started and generator) model, drive motor model, power battery packs model, driver model, and vehicle longitudinal dynamics model. To evaluate the controller area network (CAN) bus performance features such as the bus load, signal hysteresis, and to verify the reliability and real-time performance of the CAN bus multi-node control method, a co-simulation platform was built with CANoe and MATLAB/Simulink. The co-simulation results show that the control strategy can meet the requirements of the PHSB’s dynamic performance. Meanwhile, the charge-depleting mode (CD) and charge-sustaining mode (CS) can switch between each other and maintain a state-of-charge (SoC) of around 30%, indicating that the energy management strategy effectively extends the working period of the CD mode and improves the fuel economy further. The energy consumption per 100 km includes 13.7 L diesel and 10.5 kW·h electricity with an initial SoC of 75%. The CANoe simulation results show that the bus communication performs well without error frames
    • …
    corecore