6 research outputs found
Internet Program for Physical Activity and Exercise Capacity in Children With Juvenile Idiopathic Arthritis: A Multicenter Randomized Controlled Trial
Objective To determine the effects of Rheumates@Work, an internet-based program supplemented with 4 group sessions, aimed at improving physical activity, exercise capacity, health-related quality of life (HRQoL), and participation in children with juvenile idiopathic arthritis. Methods Patients were recruited from 3 pediatric rheumatology centers in The Netherlands for an observer-blinded, randomized controlled multicenter trial. Physical activity level, time spent in rest, light, and moderate-to-vigorous physical activity (MVPA) were recorded in a diary and with an accelerometer, before intervention, after intervention, and at followup after 3 and 12 months (intervention group only). Exercise capacity was assessed using the Bruce treadmill protocol, HRQoL was assessed with the Pediatric Quality of Life Inventory generic core scale, and participation in school and in physical education classes were assessed by questionnaire. Results The intervention group consisted of 28 children, and there were 21 children in the control group. MVPA, exercise capacity, and participating in school and physical education classes improved significantly in the intervention group. HRQoL improved in the control group. No significant differences were found between groups. The effect of Rheumates@Work on physical activity and exercise capacity lasted during the 12 months of followup. Improvements in physical activity were significantly better for the cohort starting in winter compared to the summer cohort. Conclusion Rheumates@Work had a positive, albeit small, effect on physical activity, exercise capacity, and participation in school and physical education class in the intervention group. Improvements lasted for 12 months. Participants who started in winter showed the most improvement. Rheumates@Work had no effect on HRQoL
Comparing rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals : on systemic dose and developmental effects
A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental lowest adverse effect level (dLOAEL). For the vast majority of cases (83% based on AUC of n = 283), dLOAELs in rats and rabbits were within the same order of magnitude (less than 10-fold different) when compared based on available data on AUC and Cmax exposures. For 13.5% of the compounds the rabbit was more sensitive and for 3.5% of compounds the rat was more sensitive when compared based on AUC exposures. For 12% of the compounds the rabbit was more sensitive and for 1.3% of compounds the rat was more sensitive based on Cmax exposures. When evaluated based on human equivalent dose (HED) conversion using standard factors, the rat and rabbit were equally sensitive. The relative extent of embryo-fetal toxicity in the presence of maternal toxicity was not different between species. Overall effect severity incidences were distributed similarly in rat and rabbit studies. Individual rat and rabbit strains did not show a different general distribution of systemic exposure LOAELs as compared to all strains combined for each species. There were no apparent species differences in the occurrence of embryo-fetal variations. Based on power of detection and given differences in the nature of developmental effects between rat and rabbit study outcomes for individual compounds, EFDT studies in two species have added value over single studies
Comparing rat and rabbit embryo-fetal developmental toxicity data for 379 pharmaceuticals: on systemic dose and developmental effects
A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental lowest adverse effect level (dLOAEL). For the vast majority of cases (83% based on AUC of n = 283), dLOAELs in rats and rabbits were within the same order of magnitude (less than 10-fold different) when compared based on available data on AUC and Cmax exposures. For 13.5% of the compounds the rabbit was more sensitive and for 3.5% of compounds the rat was more sensitive when compared based on AUC exposures. For 12% of the compounds the rabbit was more sensitive and for 1.3% of compounds the rat was more sensitive based on Cmax exposures. When evaluated based on human equivalent dose (HED) conversion using standard factors, the rat and rabbit were equally sensitive. The relative extent of embryo-fetal toxicity in the presence of maternal toxicity was not different between species. Overall effect severity incidences were distributed similarly in rat and rabbit studies. Individual rat and rabbit strains did not show a different general distribution of systemic exposure LOAELs as compared to all strains combined for each species. There were no apparent species differences in the occurrence of embryo-fetal variations. Based on power of detection and given differences in the nature of developmental effects between rat and rabbit study outcomes for individual compounds, EFDT studies in two species have added value over single studies