662 research outputs found

    How the evolutionary theory of aging can guide us in the search for aging genes

    Get PDF
    Additional work is necessary to verify Nrip1 as an aging gene that mediates an antagonistic relationship between female reproductive maturation and lifespan. But our present analysis does provide direct support for the hypothesis that genes that regulate IGF1 constitute an entire category of pleiotropic genes that influence both reproductive maturation and aging. Our results also suggest that genes such as Nrip1- with highly pleiotropic effects on metabolism and cell turnover as well as on cell signaling and life history traits - are the types of genes that have the greatest impact on aging. Our work demonstrates that the utilization of pleiotropy in strategies informed by evolutionary theory is an effective approach in the search for genes that regulate aging

    Variations in IC50 Values with Purity of Mushroom Tyrosinase

    Get PDF
    The effects of various inhibitors on crude, commercial and partially purified commercial mushroom tyrosinase were examined by comparing IC50 values. Kojic acid, salicylhydroxamic acid, tropolone, methimazole, and ammonium tetrathiomolybdate had relatively similar IC50 values for the crude, commercial and partially purified enzyme. 4-Hexylresorcinol seemed to have a somewhat higher IC50 value using crude extracts, compared to commercial or purified tyrosinase. Some inhibitors (NaCl, esculetin, biphenol, phloridzin) showed variations in IC50 values between the enzyme samples. In contrast, hydroquinone, lysozyme, Zn2+, and anisaldehyde showed little or no inhibition in concentration ranges reported to be effective inhibitors. Organic solvents (DMSO and ethanol) had IC50 values that were similar for some of the tyrosinase samples. Depending of the source of tyrosinase and choice of inhibitor, variations in IC50 values were observed

    In Vitro Biosynthesis of

    Full text link

    Cellular and Biochemical Changes in the Aging Mouse Immune System

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75006/1/j.1753-4887.1995.tb01521.x.pd

    MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.MicroRNAs (miRNAs) are small non-coding RNA species that have been shown to have roles in multiple processes that occur in higher eukaryotes. They act by binding to specific sequences in the 3' untranslated region of their target genes and causing the transcripts to be degraded by the RNA-induced silencing complex (RISC). MicroRNAs have previously been reported to demonstrate altered expression in several aging phenotypes such as cellular senescence and age itself. Here, we have measured the expression levels of 521 small regulatory microRNAs (miRNAs) in spleen tissue from young and old animals of 6 mouse strains with different median strain lifespans by quantitative real-time PCR. Expression levels of 3 microRNAs were robustly associated with strain lifespan, after correction for multiple statistical testing (miR-203-3p [β-coefficient = -0.6447, p = 4.8 × 10(-11)], miR-664-3p [β-coefficient = 0.5552, p = 5.1 × 10(-8)] and miR-708-5p [β-coefficient = 0.4986, p = 1.6 × 10(-6)]). Pathway analysis of binding sites for these three microRNAs revealed enrichment of target genes involved in key aging and longevity pathways including mTOR, FOXO and MAPK, most of which also demonstrated associations with longevity. Our results suggests that miR-203-3p, miR-664-3p and miR-708-5p may be implicated in pathways determining lifespan in mammals.This work was funded by the Wellcome Trust (grant number WT097835MF to D. Melzer and L.W. Harries), and the NIH-NIA (grant number AG038070 to The Jackson Laboratory)

    Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Dysregulation of splicing factor expression and altered alternative splicing are associated with aging in humans and other species, and also with replicative senescence in cultured cells. Here, we assess whether expression changes of key splicing regulator genes and consequent effects on alternative splicing are also associated with strain longevity in old and young mice, across 6 different mouse strains with varying lifespan (A/J, NOD.B10Sn-H2(b) /J, PWD.Phj, 129S1/SvlmJ, C57BL/6J and WSB/EiJ). Splicing factor expression and changes to alternative splicing were associated with strain lifespan in spleen and to a lesser extent in muscle. These changes mainly involved hnRNP splicing inhibitor transcripts with most changes more marked in spleens of young animals from long-lived strains. Changes in spleen isoform expression were suggestive of reduced cellular senescence and retained cellular proliferative capacity in long-lived strains. Changes in muscle isoform expression were consistent with reduced pro-inflammatory signalling in longer-lived strains. Two splicing regulators, HNRNPA1 and HNRNPA2B1, were also associated with parental longevity in humans, in the InCHIANTI aging study. Splicing factors may represent a driver, mediator or early marker of lifespan in mouse, as expression differences were present in the young animals of long-lived strains. Changes to alternative splicing patterns of key senescence genes in spleen and key remodelling genes in muscle suggest that correct regulation of alternative splicing may enhance lifespan in mice. Expression of some splicing factors in humans was also associated with parental longevity, suggesting that splicing regulation may also influence lifespan in humans.The authors would like to acknowledge the Wellcome Trust (grant number WT097835MF LWH, DM), and NIH-NIA grant number AG038070 to The Jackson Laboratory for providing the funding for this study

    Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice

    Full text link
    The National Institute on Aging's Interventions Testing Program was established to evaluate agents that are purported to increase lifespan and delay the appearance of age-related disease in genetically heterogeneous mice. Up to five compounds are added to the study each year and each compound is tested at three test sites (The Jackson Laboratory, University of Michigan, and University of Texas Health Science Center at San Antonio). Mice in the first cohort were exposed to one of four agents: aspirin, nitroflurbiprofen, 4-OH-Α-phenyl-N-tert-butyl nitrone, or nordihydroguaiaretic acid (NDGA). Sample size was sufficient to detect a 10% difference in lifespan in either sex, with 80% power, using data from two of the three sites. Pooling data from all three sites, a log-rank test showed that both NDGA ( p  = 0.0006) and aspirin ( p  = 0.01) led to increased lifespan of male mice. Comparison of the proportion of live mice at the age of 90% mortality was used as a surrogate for measurement of maximum lifespan; neither NDGA ( p  = 0.12) nor aspirin ( p  = 0.16) had a significant effect in this test. Measures of blood levels of NDGA or aspirin and its salicylic acid metabolite suggest that the observed lack of effects of NDGA or aspirin on lifespan in females could be related to gender differences in drug disposition or metabolism. Further studies are warranted to find whether NDGA or aspirin, over a range of doses, might prove to postpone death and various age-related outcomes reproducibly in mice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72117/1/j.1474-9726.2008.00414.x.pd

    Anti-Insulin Receptor Autoantibodies Are Not Required for Type 2 Diabetes Pathogenesis in NZL/Lt Mice, a New Zealand Obese (NZO)-Derived Mouse Strain

    Get PDF
    The New Zealand obese (NZO) mouse strain shares with the related New Zealand black (NZB) strain a number of immunophenotypic traits. Among these is a high proportion of B-1 B lymphocytes, a subset associated with autoantibody production. Approximately 50% of NZO/HlLt males develop a chronic insulin-resistant type 2 diabetes syndrome associated with 2 unusual features: the presence of B lymphocyte–enriched peri-insular infiltrates and the development of anti-insulin receptor autoantibodies (AIRAs). To establish the potential pathogenic contributions ofBlymphocytes and AIRAs in this model, a disrupted immunoglobulin heavy chain gene (Igh-6) congenic on the NZB/BlJ background was backcrossed 4 generations into the NZO/HlLt background and was then intercrossed to produce mice that initially segregated for wild-type versus the mutant Igh-6 allele and thus permitted comparison of syndrome development. A new flow cytometric assay (AIRA binding to transfected Chinese hamster ovary cells stably expressing mouse insulin receptor) showed IgM and IgG subclass AIRAs in serum from Igh-6 intact males, but not in Igh6null male serum. However, the absence of B lymphocytes and antibodies distinguishing mutant from wild-type males failed to significantly affect diabetes-free survival. The Igh6nullmales gained weight less rapidly than wild-type males, probably accounting for a retardation, but not prevention, of hyperglycemia. Thus, AIRA and the Blymphocyte component of the peri-insulitis in chronic diabetics were not essential either to development of insulin resistance or to eventual pancreatic beta cell failure and loss. A new substrain, designated NZL, was generated by inbreeding Igh-6 wild-type segregants. Currently at the F10 generation, NZL mice exhibit the same juvenile-onset obesity as NZO/HlLt males, but develop type 2 diabetes at a higher frequency (> 80%). Also, unlike NZO/HlLt mice that are difficult to breed, the NZL/Lt strain breeds well and thus offers clear advantages to obesity/diabetes researchers

    Acarbose improves health and lifespan in aging HET3 mice.

    Get PDF
    To follow-up on our previous report that acarbose (ACA), a drug that blocks postprandial glucose spikes, increases mouse lifespan, we studied ACA at three doses: 400, 1,000 (the original dose), and 2,500 ppm, using genetically heterogeneous mice at three sites. Each dose led to a significant change (by log-rank test) in both sexes, with larger effects in males, consistent with the original report. There were no significant differences among the three doses. The two higher doses produced 16% or 17% increases in median longevity of males, but only 4% or 5% increases in females. Age at the 90th percentile was increased significantly (8%-11%) in males at each dose, but was significantly increased (3%) in females only at 1,000 ppm. The sex effect on longevity is not explained simply by weight or fat mass, which were reduced by ACA more in females than in males. ACA at 1,000 ppm reduced lung tumors in males, diminished liver degeneration in both sexes and glomerulosclerosis in females, reduced blood glucose responses to refeeding in males, and improved rotarod performance in aging females, but not males. Three other interventions were also tested: ursolic acid, 2-(2-hydroxyphenyl) benzothiazole (HBX), and INT-767; none of these affected lifespan at the doses tested. The acarbose results confirm and extend our original report, prompt further attention to the effects of transient periods of high blood glucose on aging and the diseases of aging, including cancer, and should motivate studies of acarbose and other glucose-control drugs in humans
    corecore