9 research outputs found

    A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples

    Get PDF
    The synthesis of this dataset was enabled by funding from the Canada Foundation for Innovation, from Genome Canada through Ontario Genomics, from NSERC, and from the Ontario Ministry of Research, Innovation and Science in support of the International Barcode of Life project. It was also enabled by philanthropic support from the Gordon and Betty Moore Foundation and from Ann McCain Evans and Chris Evans. The release of the data on GGBN was supported by a GGBN ā€“ Global Genome Initiative Award and we thank G. Droege, L. Loo, K. Barker, and J. Coddington for their support. Our work depended heavily on the analytical capabilities of the Barcode of Life Data Systems (BOLD, www.boldsystems.org). We also thank colleagues at the CBG for their support, including S. Adamowicz, S. Bateson, E. Berzitis, V. Breton, V. Campbell, A. Castillo, C. Christopoulos, J. Cossey, C. Gallant, J. Gleason, R. Gwiazdowski, M. Hajibabaei, R. Hanner, K. Hough, P. Janetta, A. Pawlowski, S. Pedersen, J. Robertson, D. Roes, K. Seidle, M. A. Smith, B. St. Jacques, A. Stoneham, J. Stahlhut, R. Tabone, J.Topan, S. Walker, and C. Wei. For bioblitz-related assistance, we are grateful to D. Ireland, D. Metsger, A. Guidotti, J. Quinn and other members of Bioblitz Canada and Ontario Bioblitz. For our work in Canadaā€™s national parks, we thank S. Woodley and J. Waithaka for their lead role in organizing permits and for the many Parks Canada staff who facilitated specimen collections, including M. Allen, D. Amirault-Langlais, J. Bastick, C. Belanger, C. Bergman, J.-F. Bisaillon, S. Boyle, J. Bridgland, S. Butland, L. Cabrera, R. Chapman, J. Chisholm, B. Chruszcz, D. Crossland, H. Dempsey, N. Denommee, T. Dobbie, C. Drake, J. Feltham, A. Forshner, K. Forster, S. Frey, L. Gardiner, P. Giroux, T. Golumbia, D. Guedo, N. Guujaaw, S. Hairsine, E. Hansen, C. Harpur, S. Hayes, J. Hofman, S. Irwin, B. Johnston, V. Kafa, N. Kang, P. Langan, P. Lawn, M. Mahy, D. Masse, D. Mazerolle, C. McCarthy, I. McDonald, J. McIntosh, C. McKillop, V. Minelga, C. Ouimet, S. Parker, N. Perry, J. Piccin, A. Promaine, P. Roy, M. Savoie, D. Sigouin, P. Sinkins, R. Sissons, C. Smith, R. Smith, H. Stewart, G. Sundbo, D. Tate, R. Tompson, E. Tremblay, Y. Troutet, K. Tulk, J. Van Wieren, C. Vance, G. Walker, D. Whitaker, C. White, R. Wissink, C. Wong, and Y. Zharikov. For our work near Canadaā€™s ports in Vancouver, Toronto, Montreal, and Halifax, we thank R. Worcester, A. Chreston, M. Larrivee, and T. Zemlak, respectively. Many other organizations improved coverage in the reference library by providing access to specimens ā€“ they included the Canadian National Collection of Insects, Arachnids and Nematodes, Smithsonian Institutionā€™s National Museum of Natural History, the Canadian Museum of Nature, the University of Guelph Insect Collection, the Royal British Columbia Museum, the Royal Ontario Museum, the Pacifc Forestry Centre, the Northern Forestry Centre, the Lyman Entomological Museum, the Churchill Northern Studies Centre, and rare Charitable Research Reserve. We also thank the many taxonomic specialists who identifed specimens, including A. Borkent, B. Brown, M. Buck, C. Carr, T. Ekrem, J. Fernandez Triana, C. Guppy, K. Heller, J. Huber, L. Jacobus, J. Kjaerandsen, J. Klimaszewski, D. Lafontaine, J-F. Landry, G. Martin, A. Nicolai, D. Porco, H. Proctor, D. Quicke, J. Savage, B. C. Schmidt, M. Sharkey, A. Smith, E. Stur, A. Tomas, J. Webb, N. Woodley, and X. Zhou. We also thank K. Kerr and T. Mason for facilitating collections at Toronto Zoo and D. Iles for servicing the trap at Wapusk National Park. This paper contributes to the University of Guelphā€™s Food from Thought research program supported by the Canada First Research Excellence Fund. The Barcode of Life Data System (BOLD; www.boldsystems.org)8 was used as the primary workbench for creating, storing, analyzing, and validating the specimen and sequence records and the associated data resources48. The BOLD platform has a private, password-protected workbench for the steps from specimen data entry to data validation (see details in Data Records), and a public data portal for the release of data in various formats. The latter is accessible through an API (http://www.boldsystems.org/index.php/resources/api?type=webservices) that can also be controlled through R75 with the package ā€˜boldā€™76.Peer reviewedPublisher PD

    First-principles flocculation as the key to low energy algal biofuels processing.

    Get PDF
    This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs

    Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice

    Get PDF
    Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2ā€“26 (Ac2-26). Collagen IV (Col IV)ā€“targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlrāˆ’/āˆ’ mice. When administered to mice with preexisting lesions, Col IVā€“Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy

    Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis

    No full text
    Inflammation is an essential protective biological response involving a coordinated cascade of signals between cytokines and immune signaling molecules that facilitate return to tissue homeostasis after acute injury or infection. However, inflammation is not effectively resolved in chronic inflammatory diseases such as atherosclerosis and can lead to tissue damage and exacerbation of the underlying condition. Therapeutics that dampen inflammation and enhance resolution are currently of considerable interest, in particular those that temper inflammation with minimal host collateral damage. Here we present the development and efficacy investigations of controlled-release polymeric nanoparticles incorporating the anti-inflammatory cytokine interleukin 10 (IL-10) for targeted delivery to atherosclerotic plaques. Nanoparticles were nanoengineered <i>via</i> self-assembly of biodegradable polyester polymers by nanoprecipitation using a rapid micromixer chip capable of producing nanoparticles with retained IL-10 bioactivity post-exposure to organic solvent. A systematic combinatorial approach was taken to screen nanoparticles, resulting in an optimal bioactive formulation from <i>in vitro</i> and <i>ex vivo</i> studies. The most potent nanoparticle termed Col-IV IL-10 NP22 significantly tempered acute inflammation in a self-limited peritonitis model and was shown to be more potent than native IL-10. Furthermore, the Col-IV IL-10 nanoparticles prevented vulnerable plaque formation by increasing fibrous cap thickness and decreasing necrotic cores in advanced lesions of high fat-fed LDLr<sup>ā€“/ā€“</sup> mice. These results demonstrate the efficacy and pro-resolving potential of this engineered nanoparticle for controlled delivery of the potent IL-10 cytokine for the treatment of atherosclerosis

    The immune system and developmental programming of brain and behavior

    No full text
    corecore