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Abstract 
 

This document summarizes a three year Laboratory Directed Research and 
Development (LDRD) program effort to improve our understanding of algal 
flocculation with a key to overcoming harvesting as a techno-economic barrier to 
algal biofuels. Flocculation is limited by the concentrations of deprotonated 
functional groups on the algal cell surface.  Favorable charged groups on the surfaces 
of precipitates that form in solution and the interaction of both with ions in the water 
can favor flocculation.  Measurements of algae cell-surface functional groups are 
reported and related to the quantity of flocculant required.   Deprotonation of surface 
groups and complexation of surface groups with ions from the growth media are 
predicted in the context of PHREEQC.  The understanding of surface chemistry is 
linked to boundaries of effective flocculation.  We show that the phase-space of 
effective flocculation can be expanded by more frequent alga-alga or floc-floc 
collisions.  The collision frequency is dependent on the floc structure, described in the 
fractal sense.  The fractal floc structure is shown to depend on the rate of shear 
mixing.  We present both experimental measurements of the floc structure variation 
and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel 
Simulator).  Both show a densification of the flocs with increasing shear.  The 
LAMMPS results show a combined change in the fractal dimension and a change in 
the coordination number leading to stronger flocs.   
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1 INTRODUCTION  
Concerns about energy security, resource depletion and environmental consequences of fossil 
fuel use have motivated the development of biomass as a source raw material for biofuels.  Much 
of the oil that we remove from the ground as petroleum today originated as algae, and a 
significant fraction of the biomass on the earth at any given time is associated with algae.  Algae 
have potential as a significant source of biomass due to its high photosynthetic efficiency, high 
growth rates and high lipid fraction.  Further, algae can grow in brackish and saline waters, 
reducing the need to employ valuable fresh water resources for biofuel production.  Algae also 
consume nitrates and phosphates in waters, making them valuable for cleaning municipal and 
agricultural waste streams in some communities.  With their potential for high oil production per 
acre relative to other biofuels sources, algal biofuels have the potential to substantially contribute 
to energy diversity if certain barriers can be overcome [1-12].   
 
A significant barrier is the energy/cost associated with harvesting and dewatering algae.  Algae 
cultures grow to densities on the order of one kilogram of biomass per ton of water, and the cost 
of pumping water is a significant concern for energy efficient and economic biomass production.  
While advanced cultivation methods can yield somewhat higher yields, the cost to move one 
thousand times more water to recover biomass rapidly becomes prohibitive.   
 
A typical approach to separating solids in suspension is centrifugation, and this has been 
employed for algae, especially in industries where nutritional and cosmetic products with high 
values can be obtained.  The energy associated with centrifugation is proportional to the volume 
of the culture media, however, and the energy cost to centrifuge algae of typical culture density 
is comparable to the energy in a potential biofuel product [5].  Filtration is another approach to 
solids separation that is favorable at low culture densities [13].  However, the small cell size of 
productive algal species and the existence of a continuum of sizes of organic matter from the 
lysed cell fragments to organic macromolecules can cause membrane fouling and increase 
pumping costs [5].    
 
Algae flocculation is a potentially low cost and low energy approach to providing the initial 
separation of the biomass from the bulk of the culture media [2, 14-39].  If algal cells come 
together and form sufficiently large flocs, their differential density will cause them to 
gravitationally settle, or to float in the presence of bubbles.  The resulting biomass slurry or paste 
generally has a relatively high liquid content (perhaps as high as 80-90% water), but the order of 
magnitude or greater concentration and increased floc size make subsequent processing with 
filter presses or centrifuges energy efficient.   
 
Flocculation is a common means for separation of solids from suspensions and several notable 
reviews outside of the algae-harvesting field can be referred to understand the progress of the 
field to date. Bratby provides a broad overview of the field as it applies to water treatment [40], 
while Gregory reviews flocculation at a more fundamental level [41].  Duan and Gregory 
provide an overview of the chemistry of typical inorganic flocculants used in water treatment, in 
particular Fe and Al based flocculants like those employed in much of the present work [42].   
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1.1 ALGAE SURFACE CHARGE 
The small size and low concentration of algal cultures make separation by settling or flotation 
difficult, but it is the ionic nature of the algal cell surface that provides the first barrier to floc 
growth.  Algae like other cellular organisms have organic molecules on their cell surfaces that 
are strongly hydrophilic.  These hydrophilic surfaces are the result of  acidic and neutral 
polysaccharides and proteins on the surface [43].  Typical polysaccharides might be from the 
class of pectins and include uronic acid and similar functional groups [43].  Further, surface 
functional groups are often charged under culture conditions.  Carboxyl groups (uronic acid is a 
carboxylated sugar) are typical of cell surfaces and these tend to dissociate to a negatively charge 
group for pH much above four.  Other typical groups include hydroxyl and phosphate groups that 
tend to be negatively charged; amine groups are positively charged at neutral pH [44].  Overall, it 
has long been known that a negative surface charge exists that serves to stabilize the suspension 
at most pH [45].  In Sec. 3.1 we describe measurements of the algae surface charge.  
 
This negative surface charge interacts with the ionic content of the water (indeed the 
development of charge depends on the hydronium ion concentration), and complexes between 
cell surface molecules and ions in the culture media will influence the net surface charge.  To 
induce flocculation, it is generally necessary to induce favorable, or at least overcome 
unfavorable, surface charges.  In Sec. 3.2 we discuss the prediction of surface complex formation  
that allows us to predict the change in the charge density on the algal cell surface with the change 
in the ionic content of the culture media.     
 
For algae flocculation the surface charge density is high enough (see Sec. 3.1) that precipitates 
with favorable surface charges are found to be the most effective means of overcoming the algae 
surface charge.  This is the mechanism by which traditional inorganic salts used for water 
treatment appear to act in conjunction with algae; iron and aluminum-based salts are typical 
examples.   The phase space over which these typical flocculants work for algae is discussed in  
Sec. 2.1 in work that is based on experimental observations.  The boundaries for effective 
flocculation are related to the surfaces of the algae and the precipitates there, and the prediction 
of the precipitate surface charges is discussed in Sec. 3.2.  More attention is paid to the 
precipitation and surface charges of natural salts that are potential flocculants.  Calcium and 
magnesium are present in seawater and often in brackish waters in concentrations sufficiently 
high to precipitate at high pH.  Since photosynthetic growth of algae tends to increase the pH, 
this occurrence of flocculation can sometimes be induced automatically by just neglecting to mix 
in enough CO2 to maintain near neutral pH.  This so-called autoflocculation is described in Sec. 
2.2.   
 
1.2 FLOC GROWTH AND SEPARATION  
If the surface charge is overcome, there will be a tendency for algae to flocculate, but the time 
scales for floc growth and separation are generally too small and the density of the settled flocs is 
too low without some influence of fluid mixing. The fact that promising algae are larger than one 
micron means that Brownian diffusion is generally not very effective in bringing cells together. 
Fluid mixing creates shear that can bring cells together (Figure 1) and this is generally the 
primary means of initial floc growth.  Larger flocs will typically settle faster than smaller flocs 
and differential settling is also a significant mode of floc growth for floc sizes in the tens of 
microns and larger (Figure 1). 
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Figure 1. Schematic representation of shear and settling modes of particle interaction. 
 
Dissolved air flotation (DAF) also operates in the differential-settling regime.  In DAF, bubbles 
nucleate due to the injection of supersaturated air, and typical bubble sizes are fifty to seventy 
microns.  These bubbles interact with algae cells and their buoyancy brings the algae to the 
surface, leaving a subnatant that can be decanted.  The efficiency of DAF algae separation is 
described in Sec. 2.1 where it is shown that added flocculant is generally required to attain good 
separation efficiencies.  Added flocculant provides two benefits: it collects the large number of 
algae cells into a smaller number of flocs that can be collected by the injected bubbles, and it 
neutralizes anionic surface charges on both algae flocs and bubbles to allow more efficient 
adhesion.  In Ref. [46] we describe a model for DAF-based separation.  The key development 
associated with this model is its identification of the importance of the degree of pre-flocculation 
in determining the overall separation efficiency.  The biomass loadings in algae cultures are large 
enough that without pre-flocculation there are not enough bubbles to collect all of the algae cells.       
 
The degree of mixing required to grow flocs is an important energy consideration, but mixing 
can have two other effects: it is observed to both restructure and fragment flocs.  Restructuring 
leads to denser flocs and can be beneficial if the flocs are designed to settle.  Greater floc density 
will generally lead to higher solids fractions in the separated slurry or paste.  On the other hand, 
denser flocs have smaller collision cross sections, leading to slower overall growth or reduced 
interaction with bubbles.  Floc fragmentation can also lead to denser flocs and it results in an 
upper bound on the stable floc size for a given input shear energy.  To optimize separation 
processes requires an understanding of the interplay between floc growth, restructuring and 
fragmentation.   This balance between floc growth and fragmentation is particularly evident in 
Couette flow experiments where steady state size distributions can be observed.  In Sec. 4 we 
describe algae floc characteristics in Couette flow and compare these with observations of other 
particle systems.    
 
To better understand this interplay between floc growth and restructuring, we describe in Sec. 6 
and 7 simulations using the LAMMPS (Large-scale Atomic/Molecular Massively Parallel 
Simulator) code.  These provide a fully exposed view of particle dynamics that allows us to 
observe in detail the simultaneous growth, restructuring and fragmentation of flocs.  The results 

shear 
   settling 

 

  rising  
bubbles 
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show the shift from relatively open (low density flocs) at early stages of growth to more dense 
flocs.  The higher density is clearly evident in flocs larger than a critical size and the density can 
be characterized in terms of an increase in both the fractal dimension and the average 
coordination number.  While the change in the fractal dimension with time is observed 
experimentally, this detailed view of restructuring during floc growth has never been reported 
experimentally demonstrating the value of high fidelity simulations applied to difficult-to-
observe processes.  
 
In Sec. 5 we bring together the mixing, restructuring, fragmentation and differential settling 
driven evolution of the floc size distribution.   A sectional model discretizes the size distribution 
and describes the relative flux of mass to larger and smaller size flocs through the combined 
effects of each of these processes.  The long term evolution of the size distribution can be 
predicted with these models as can steady state distributions.  In the long term, these will be the 
appropriate models to couple with computational fluid dynamics methods to optimize flow and 
flocculation together.    
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2 A REVIEW OF ALGAE FLOCCULATION  
In this section we review past research in algae flocculation, and highlight some results coming 
from this project that are detailed in Refs. [37, 38].  Algae flocculation practice is similar to 
water treatment [18, 40].  However, the economics of algal flocculation are less favorable than 
those of water treatment because the flocculant requirements per mass of algae harvested are 
relatively large compared to the flocculant required to treat a given quantity of water.   To 
leading order, except at very high concentrations of solids (discussed later and in [37]), 
flocculant requirements increase with the mass of algae to be separated, and the mass densities of 
algae in intentional algae cultivation are several orders of magnitude larger than are typical in 
water treatment.      
 
Algae flocculation is generally associated either with the precipitation of favorably charged 
inorganic salts or organic polymers. A list of typical algal flocculants is provided in Table 1.  
The present work will focus on inorganic flocculants with a particular emphasis on the 
precipitation of bulk salts at high pH.   
 
Table 1. Algae flocculants 

Flocculant	 Mechanism	
Metals	 Alum	 Charge	neutralization	(low	pH),	sweep	flocculation	(high	pH)	

	 PACl	 Charge	neutralization/Bridging	

	 Fe(III)	chloride/sulfate	 Charge	neutralization	(low	pH),	sweep	flocculation	(high	pH)	

	 Lime	(CaO,	Ca(OH)2)	 Increase	pH,	charge	neutralization	

	 Mg	 Charge	neutralization	by	formed	Mg(OH)2	

Organics	 Cationic	polyelectrolytes	–	
Chitosan,	
Polydiallyldimethylammonium	
chloride	(PolyDADMAC),	
Cationic	polyacrylamides	(e.g.	
Praestol	Zetag	63	and	92),	
Cationic	starches,	Microbial	
bioflocculants	(AM49),	Purifloc	
C‐31		

Charge	neutralization/Bridging	

		
		
		
		
		

	 Anionic	polyelectrolytes		(+	
Ca2+,	Mg2+)	

Charge	neutralization/Bridging	

 
 
2.1 FLOCCULATION WITH INORGANIC SALTS 
In water treatment, aluminum and iron-based flocculants (i.e. Al2(SO4)3 and FeCl3) are typically 
employed, and these are added in concentrations that lead to precipitation in the form of metal 
hydroxides [40, 42].  The most typical precipitates are Al(OH)3 and Fe(OH)3, but a wider range 
of forms are commonly observed with aluminum [47].  The basic mechanism for flocculation 
involving multivalent cationic salt flocculants involves a mutual attraction and subsequent 
neutralization of the algae charge by the oppositely charged hydroxide of the flocculant.   
 
Duan and Gregory provide a comprehensive review of flocculation using Fe and Al based 
flocculants as of 2002 [42].   Metal cations are hydrated in water and with a highly charged metal 
cation the hydrating molecules become strongly polarized leading to displacement of hydronium 
and reactions like  
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2 3 4Me Me(OH) Me(OH) Me(OH) Me(OH)        (1) 

with reactions progressing further to the right under higher pH conditions because of the 
availability of OH- in the solution.  Equilibrium constants are given in Table 2 along with 
solubility constants for the amorphous phase precipitates.  These equilibrium constants are based 
on the following reaction set 
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Note that the Al species constants are grouped into a narrow range of pH from 5 to 7 while the 
Fe constants span the range of 2 < pH < 10 (see Table 2 and figures from Refs. [48] and [49]).  
This suggests that one goes from Al3+ to Al(OH)4

- in a narrow range while each of the ferric 
species has a regime over which it is the dominant soluble species.   
 
Table 2. Hydrolysis and solubility constants from [48] and [49].   
	 pK1	 pK2	 pK3	 pK4	 pKS,amorph	
Al3+	 4.95	 5.6	 6.7	 5.6	 31.5	
Fe3+	 2.2	 3.5	 6	 10	 38	
	
Polynuclear species can be formed from both Fe and Al, but those in the Al system are better 
studied with good evidence for Al13O4(OH)24

7+ (a central Al13O4
5- surrounded by 12 Al 

Al(OH)2
+) [42].  Duan notes that the surface charge characteristics and isoelectric points for 

precipitates depend on the preparation of the precipitate.  For example, he notes that the i.e.p. 
(iso-electric point) for Al(OH)3 precipitated from AlCl3 is around 9 while that precipitated from 
Al2(SO4) 3 is around 8. For amorphous Fe(OH)3 precipitate the i.e.p. is somewhat lower.  They 
note a dependence on the ratio of the cation to OH- and to the presence of polyvalent anions like 
sulfate.  In general, for pre-hydrolysed precipitates, the i.e.p. is one or more pH units greater, 
potentially giving a wider bound for the cation-anion interactions [42].   
 
The application of the ferric-based flocculant FeCl3 to algae harvesting was investigated in this 
work, and is the subject of Ref. [37].  There are several key results.  First, flocculation is limited 
to pH > 4 because for lower pH the algal surface is cationic and unfavorable to reaction with 
strongly cationic ferric species.  At high pH where ferric species are anionic along with the algae 
surface there were no observed limitations on the flocculability.  This is presumed to be because 
the net ionic charge on the algae is formed from a combination of anionic surface groups (like 
carboxylic groups) and cationic surface groups (like amine groups) while the ferric hydroxide 
precipitate has an overall cationic charge.   
 
Second, the required dosage of flocculants like FeCl3 for high efficiency flocculation is relatively 
high.  When the algae concentration is below 1g/L, there is an approximate linear relationship, 
referred to in the literature as the stoichiometric relationship, between the algal mass and the 
required flocculant with approximately 0.7 g FeCl3 required per gram of algal biomass [37].  
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This value is expected to depend on the species, but results of this magnitude have been found in 
other work [20, 27] and also with aluminum-based coagulants [27, 38].    
 
For higher algae concentrations, above 1 g/l the results of [37] show that less flocculant per mass 
of algae is required .  The reduced flocculant requirements at high algae concentrations are 
related to the more frequent collisions between flocs that occur at high densities.  These more 
frequent collisions allow flocculation to occur even when the algae surface is less completely 
covered by flocculant.  This is significant because it shows the value of cultivating algae at high 
densities in terms of reducing flocculant costs. 
 
In another paper to come out of this project, Zhang et al. quantify the aluminum flocculant 
requirements for varying degrees of harvesting efficiency [38].  In that work the tendency to 
require stoichiometric concentrations of flocculant is related to the concentrations of charged 
functional groups on the algae surface.  It was also shown that later in the lifecycle, the 
concentrations of these functional groups decline and this leads to reduced flocculant 
requirements.  Since this late-stage growth corresponds to higher lipid contents under nitrogen-
starvation conditions, this can be an effective method of reducing the flocculation costs while 
simultaneously increasing lipid yields [38].   
 
Another key result that has come out of the work from this project is the quantification of 
interactions between dissolved organic material (DOM) and flocculants.  DOM is organic matter 
not associated with the actual cells, although a large fraction or the majority may originate with 
the algae.  DOM has similar functional groups as the cell surface and associates with the 
flocculant, effectively reducing the quantity of flocculant that can neutralize the surface charges 
[17, 50-52].  DOM is found in our work to vary over the algae cultivation lifecycle, increasing in 
later stages, but this was not as strong of an effect as the reduction in the flocculant requirements 
associated with the reduced concentrations of surface functional groups [38].   
 
In Ref. [38]it was found that the harvesting efficiency dependence on flocculant dosage (in the 
absence of DOM) could be empirically be expressed in the general form of a logistic equation of 
the form  

  
2 1

1

01 exp ( )algae

A A
A

A B


 


 
  
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where  is the harvesting efficiency, and Ai and B are system-dependent empirical constants that 
are tabulated for one system in Ref. [38].  The parameter ( )Algae   is the flocculant dosage per 

mole of functional surface groups.   A benefit of the relation between required flocculant dosage 
and the harvesting efficiency in the form of Eq. (3) is that one can identify the benefit of 
additional coagulant in terms of the additional algae harvested. This is of interest primarily for 
determining the economic costs for different process designs. For example, differentiating Eq. 
(3) and multiplying by the concentration of surface sites, ,0( )F FY Y , yields 
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 (4) 
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the additional Al3+ dosage required in the DOM-free cultures to increase the efficiency by d 
above . The quantity that depends only on  , dAlgae/d, is plotted in Figure 2 demonstrating 
that the marginal cost of improving flocculation is low in the vicinity of 50%, but the marginal 
additional coagulant requirement is greatly increased at the highest efficiencies.  In other words, 
the benefit of additional coagulant is greatly reduced at the highest efficiencies potentially 
leading to a reduced return on investment in coagulants.  This is yet another example of the 
maxim that 90% of the effort goes into the last 10% of a task. 
 

 
Figure 2.  Marginal additional coagulant required to increase the efficiency based on 
correlation in Eq. (3).  
 
A significant issue that was not addressed in the present project, but that has been addressed 
previously is the role of salinity in the effectiveness of various flocculants.  Sukenik et al. [2] 
studied the effect of salinity and ionic strength on inorganic flocculants and inorganic flocculants 
combined with cationic polymers (see [15] for a related study focusing on cationic polymers).   
In saline waters with ionic strength of approximately 0.7 M the required dosage for FeCl3 and 
Al2(SO4)3 was five to ten times higher (higher required dosage for motile algae) than for 
freshwater species.   The authors suggest that high ionic strengths (or high salt concentrations) 
interfere with inorganic flocculants by masking functionally active sites of metal hydroxides and 
by reducing the overall activity (activity coefficients) of the added flocculants.  A linear 
relationship is found between the required dosage and the medium ionic strength [2].  At ionic 
strengths typical of desert brackish waters (I = 0.1 M) the inorganic flocculants do not lose much 
of their activity/effectiveness relative to their freshwater performance.  Low concentrations of 
chitosan in conjunction with inorganic flocculants resulted in improved flocculation, but the 
chitosan needs to be added first.   Adding on the order of 2 – 4  mg chitosan per liter significantly 
increased the effectiveness of the FeCl3 [2].  Treatment with ozone also significantly increased 
the effectiveness of the inorganic flocculants in sea water; the authors ascribe this effect to 
reductions in cell motility and changes in cell surface characteristics.   
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2.2 PH DRIVEN AUTOFLOCCULATION 
The large relative concentrations of flocculants required for harvesting algae suggest that 
inexpensive flocculants will be required.  Because seawater and many brackish waters contains 
large quantities of calcium and magnesium, concentrations several times greater than the 
concentrations generally required for flocculation with iron or aluminum based flocculants, there 
has long been an interest in the use of these salts as flocculants, and this interest is supported by 
observed flocculation and separation at high pH where magnesium and calcium containing salts 
precipitate [14, 20, 31, 32, 53, 54].   This phenomenon has been referred to as autoflocculation 
since the photosynthetic consumption of carbon dioxide can lead to sufficiently increased pH 
where this autoflocculation has been observed to be driven by the algae themselves.  Thus, algae 
can be induced to autoflocculate just by turning off the supply of carbon dioxide. 
 
Ayoub et al. demonstrated algae flocculation in wastewater to which sea water (up to 20%) is 
added in conjunction with shifts in the pH (from pH of 9 to 11.5) [14].   They reached the 
conclusion that Mg(OH)2 precipitation was driving the flocculation.  In that and other work, 
Mg(OH)2 precipitation has been found to be more effective that calcite precipitation [14, 53], 
even though calcite precipitation occurs in similar quantities over similar pH ranges. 
 
Sukenik and Shelef studied the autoflocculation of seawater containing additional phosphate 
[32].  Under these conditions, autoflocculation associated with calcium phosphate (amorphous 
hydroxyapatite) is observed for pH > 8.  The fact that this leads to the nutrient phosphate being 
removed from the culture media may not be desirable for algae cultivation (although this is a 
desirable consequence with waste water treatment). 
 
The conditions over which autoflocculation occur depend on the water chemistry and also 
apparently on the species.  The causes for the differences in flocculation behavior between algal 
species have not yet been identified.  Given the variations in flocculation efficiency with 
differing algae strains, it is crucial to understand the interactions between flocculant and algae 
cells as well as solution conditions that provide the highest flocculation efficiencies for the algae 
strain selected for a given application.  To this end, in Sec. 3 and Ref. [55] we discuss the 
predictions of the surface chemistry of precipitates of Mg(OH)2, calcite and calcium phosphates 
in conjunction with the algae surface chemistry. 
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3 ALGAE AND PRECIPITATE SURFACE MODELING 
 
The typically anionic algae surface charge is responsible for the stability of the algal suspension 
(resistance to flocculation) under natural growth conditions.   In this work we have related the 
algal surface properties to the efficiency of flocculation [37, 38], and we have provided models 
for the change in surface state with water chemistry [55].  Further, the effectiveness of 
flocculants and other natural processes (i.e. bulk salt precipitation described in Sec. 2.2 on 
autoflocculation) depends on the surface state of precipitates.  In Ref. [55] we provide models for 
the surface state of several precipitates relevant to autoflocculation.  
 
Modeling of algae surface charge is complicated by the fact that algae surfaces are chemically 
heterogeneous mixtures of proteins and macromolecules and are parts of living cells out of 
equilibrium with adjacent fluids. Algal surface charge is apparently species-dependent but not 
phyla-dependent [56]. While there are subtle differences in the equilibrium constants and site 
densities between different species of algae [see e.g. Table 3 of 57] and bacteria, they are broadly 
similar and can be generalized.   
 
Above pH ~ 4 - 5 algae surfaces are generally measured to be anionic; at lower pH they have a 
positive charge.  pH and ionic strength-dependent algae surface charge is controlled by 
carboxylate, phosphate, and hydroxyl/amine groups which become deprotonated above pH 4 - 6 
(carboxylic groups), pH 7 - 8 (phosphoric groups), and pH 9 - 10 (hydroxyl/amine groups).  The 
observed shifts in net surface charge around pH ~ 4 – 5 reflect the predominance of carboxylate 
groups on the algal surface.  The anionic algae surface charge effectively stabilizes many algal 
suspensions.  Carboxylate and phosphate groups are able to sorb cationic species such as Ca+2 
and Mg+2 and decrease their electrostatic repulsion from other algae, or they can attach to 
positively charged solid surfaces and cationic polymers.  Coordination with cations, mineral 
precipitates, and cationic polymers, in particular, leads to algae flocculation.  The conditions 
under which this occurs will depend upon fluid chemistry and the chemistry of the particular 
algae surface.  Below we measure algae surface charge, algae flocculation with ferric chloride, 
and then develop a general model that links fluid chemistry to algae surface charge with a 
surface complexation model using the USGS chemical speciation code PHREEQC [58].  In 
Appendix A we provide an input file for PHREEQC that includes the appropriate parameters for 
algal surface modeling along with the solution phase and parameters for the surfaces of relevant 
precipitates. 
 
3.1 MEASUREMENT OF ALGAE SURFACE CHEMISTRY 
The titration method of Hadjoudja et al. [44] was used to measure C. zofingiensis surface charge.  
100 mL algae samples were taken every 4 days, centrifuged 20 min at 500 G and then washed 
twice with 0.001 Na2EDTA to remove adsorbed metals.  Algae were subsequently rinsed 3 times 
with 0.1 M NaNO3 and the volume brought up to 45 mL with 0.1 M NaNO3.  Suspension pH was 
lowered to around 3.0 using 0.1 M HCl and the suspension purged with N2 for 10 min to remove 
CO2.  Samples were then titrated up to pH of 10 under N2 protection using 0.1 M NaOH. 20 µL 
NaOH was added each time and the pH recorded after equilibrium; sample pH versus NaOH 
profiles are given in Figure 3. The titration process took 30~40 min.  The volumes of algal 
suspensions before and after titration were recorded. Dry weights were measured after titration 
and the total algal biomass were calculated.  The data were analyzed using Profit 2.1 [59].   
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Figure 3.  Representative surface titration results. 

 
  
Hadjoudja et al. [44] fit their algae surface titration results with a Donnan Shell Model which 
assumes that a fraction of the surface potential exists beneath the algae-water interface.  We use 
the same constants to predict surface charge using a diffuse layer model (DLM).  The DLM is 
one of the simplest models of the electric double layer and envisions a surface layer with a pH-
dependent surface charge and a Gouy-Chapman diffuse layer of counterions [see e.g. 60].    
 
Figure 4 shows calculated carboxyl, phosphate, amine/hydroxyl abundances from measurements 
conducted during this project.  These measured concentrations are for continuous growth 
conditions in a chemostat overflow.  In the chemostat overflow a continuous supply of nutrients 
couples with a long residence time to provide one set of growth conditions that can be contrasted 
with batch cultivation described in the following paragraph.   Results from our predictions of the 
surface state as a function of the surrounding fluid phase chemistry (pH and ionic concentrations) 
are reported in Refs. [37, 55].   These predictions describe the deprotonation of the reported 
functional groups along with the formation of complexes with abundant ions and flocculants. 
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Figure 4.  Measured functional group concentrations for C. zofingiensis under 
continuous growth conditions.   
 
Measurements of surface functional groups was also carried out at Arizona State University 
within the context of this project under batch culture conditions.  The nitrogen nutrient load was 
significantly reduced to induce nitrogen-starvation driven lipid production [13], giving growth 
conditions that typically result in a relatively high lipid fraction.  Under these culture conditions, 
the growth moves rapidly through exponential to stationary and then declining growth.  
Concentrations of carboxyl, phosphate, amine/ hydroxyl groups were measured to decrease as 
the culture transformed from the exponential growth to declining phases, and this reduction in 
the surface functional group concentrations was found to be linearly correlated with the required 
flocculant for a given flocculation efficiency [13].   It is noteworthy that differences in growth 
stage and growth conditions lead to significant variations in the surface state.  This sensitivity 
suggests that monitoring of the algal surface state in terms of the concentrations of functional 
groups as a function of growth conditions will be important in understanding the flocculation 
requirements.  This represents an area where further study of varied species is required.  
 
3.2 PREDICTING ALGAE AND PRECIPITATE SURFACE STATES 
The algae surface charge varies with the ionic content of the water.  To leading order, pH-
dependent deprotonation leads to charges on surface functional groups.  These functional groups 
also form complexes with other ionic species in the solution that alter the surface state.   In Ref. 
[55] we provide models for the surface state of algal functional groups.  We also provide models 
for the surface of key precipitates associated with bulk salts that are readily available in saline 
waters, namely brucite or Mg(OH)2, calcium phosphate (hydroxyapatite) and calcite [55].  The 
equilibrium constants(log K’s)  associated with each surface complex are summarized in Table 3.  
-COOH, -POOH, and –NH represent respectively carboxyl, phosporyl and nitrogen base groups.  
For each surface reaction an equilibrium constant is defined as, for the example of carboxylate 
group deprotonation, K = [-COO-]exp(-F/RT)aH+/[-COOH] where bracketed terms are surface 
concentrations (μmoles/m2); F is Faraday’s constant;  is the surface potential; aH+ is the activity 
of the hydrogen ion; R is the gas constant; T is absolute temperature.   
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Table 3.  Diffuse layer model input parameters for the surfaces of algae, Mg(OH)2, 
hydroxyapatite and calcite [55].  

	 Algae	 25oC	log	K

1	 ‐COOH		‐COO‐	+	H+	 ‐3.9	
2	 ‐POH		‐PO‐	+	H+	 ‐7.1	
3	 ‐NH2+		‐NH	+	H+	 ‐9.0	
4	 ‐COOH	+	Ca+2		‐COOCa+	+	H+	 ‐3.8	
5	 ‐COOH	+	Mg+2		‐COOMg+	+	H+	 ‐3.5	
6	 ‐COOH	+	Fe+3		‐COOFe+2	+	H+	 ‐1.5	
7	 ‐COOH	+	FeOH+2		‐COOFeOH+	+	H+	 ‐3.3	
8	 ‐POH	+	Ca+2		‐POCa+	+	H+	 ‐0.6	
9	 ‐POH	+	Mg+2		‐POMg+	+	H+	 ‐0.7	

	 Mg(OH)2	 	

10	 >MgOH2+		>MgOH	+	H+	 ‐10	
11	 >MgOH		>MgO‐	+	H+	 ‐12	

	 Hydroxyapatite	 		
12	 >CaOH	+	H+		>CaOH2+	 8.41	
13	 >PO3H2			>PO3H‐	+	H+	 ‐1.11	
14	 >CaOH	+	HPO4‐2	+	H+			>CaPO4H‐	+	H2O	 11.63	
15	 >PO3H2	+	Na+			>PO3Na‐	+2H+	 ‐5.1	
16	 >PO3H2	+	Ca+2			>PO3HCa+	+	H+	 ‐0.7	
17	 >PO3H2	+	Mg+2			>PO3HMg+	+	H+	 ‐0.7	

	
Calcite	Surface/	
Solution	Analogue	

		

18	 >CaOH	+	H+		>CaOH2+	 a11.8	
19	 Ca(OH)2aq	+	H+		CaOH+	+	H2O	 a11	
20	 >CaOH 	+	H+	+	CO3‐2			>CaCO3‐		+	H2O	 17.1	
21	 Ca(OH)+	+	H+	+	CO3‐2		CaCO3aq	+	H2O	 16.6	
22	 >CaOH2+		+	SO4‐2			>CaSO4‐	+	H2O	 2.1	
23	 Ca+2	+	SO4‐2		CaSO4aq	+	H2O	 2.1	
24	 >CO3H	>CO3‐		+	H+	 ‐5.1	
25	 cH2CO3*		HCO3‐	+	H+	 b‐5.1	

26	 >CO3H	+	Ca+2		>CO3Ca+	+	H+	 c‐2.6	

27	 >CO3H	+	Mg+2		>CO3Mg+	+	H+	 d‐2.6	

28	 >CaOH2+		+	HPO4‐2			>CaHPO4‐	+	H2O	 2.7	

29	 Ca+2	+	HPO4‐2			CaHPO4	 2.7	

30	 >CaOH2+		+	HPO4‐2			>CaPO4‐2	+	H+	+	H2O	 ‐5.3	

31	 Ca+2	+	HPO4‐2			>CaPO4‐	+	H+	 ‐5.3	
Notes: aDerived from analogues by Pokrovsky and Schott [61] bH2CO3

* denotes true 
H2CO3 – see pg. 150 of Stumm and Morgan [62].  cAdjusted to the value of Van Capellen 
et al. [63] to achieve lower Ca surface coverage. The total calcite site density is set to 
8.22 μmol/m2 split equally over >CaOH and >CO3H sites [61]. dSet equal to the Ca+2 
sorption constant.  All Aqueous log Ks and enthalpies came from the Lawrence 
Livermore National Laboratory thermo.com.V8.R6.230 thermodynamic database, with 
the exception of the H2CO3 deprotonation enthalpy, which came from Stumm and 
Morgan [62] and the enthalpies of CaOH+ , MgHCO3

+, CaHCO3
+  and CaSO4 formation 

which were calculated from the Yucca Mountain Repository Program thermodynamic 
database (data0.ymp.r5d) values. 

 
 
 



25 

 
Figure 5.  Concentrations for above which precipitation is expected for key brackish and 
saline water salts. 
 
The parameters in in Table 3 are also included in the PHREEQC input file provided in Appendix 
A.  This enables the prediction of combined algae and precipitate surface properties to identify 
favorable conditions for flocculation in saline and brackish waters.  In Ref. [55] we discuss these 
favorable conditions for flocculation in the context of several experimental demonstrations of 
autoflocculation [14, 20, 32].  Also of relevance is the concentration range over which 
precipitates occur.  In Figure 5 we plot the nominal ion concentrations above which precipitation 
is expected for key saline and brackish water salts.   
 
3.3 BRACKISH AND SALINE WATER RESOURCES 
A significant advantage of algae over other sources of biomass comes from its ability to grow in 
brackish and saline waters.  In this section we briefly review some potential water resources that 
are not suitable for traditional agricultural uses.  While the removal of algae from relatively 
dilute wastewaters is well understood, the controls over algae flocculation in saline/brackish 
water algal biofuels production settings is less clear.  Saline waters have salt concentrations 
greater than 1,000 ppm and can exceed seawater salinities (35,000 ppm).  Saline groundwaters in 
the US southwest, in particular waters of New Mexico, have been suggested as media for algal 
biofuels production.  Saline groundwaters in the southwest are dominated by the salts of CaSO4, 
NaCl,  CaCO3, MgSO4, and silica.  Figure 6 describes the compositions of New Mexico saline 
waters.  
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Figure 6. Piper diagram of New Mexico saline water types [from 64]. 
 
Waters are typically alkaline, having pHs ≥ 8.  Silica levels often exceed ~ 30 ppm.  When 
concentrated (e.g. for desalination to produce drinking water) past 120 ppm, amorphous silica 
scale (SiO2) spontaneously precipitates.  Waters are typically at, or very close to, saturation with 
respect to calcite (CaCO3) and/or gypsum (CaSO4:2H2O).  Like most groundwaters, their 
carbonate chemistry indicates equilibrium with CO2 partial pressures ≥ 10 times atmospheric 
(PCO2,atmospheric = 10-3.5 atm.)  Because inland brines are increasingly the target of drinking water 
desalination efforts, algal ponds may end up using reverse osmosis reject waters (desalination 
concentrates) or power plant cooling tower waters, which would each carry, in addition to high 
levels of the salts mentioned previously, anti-scalants as well. Table 4 provides representative 
water compositions of desalination concentrate and cooling tower water.  
 
Table 4. Potential algal biofuel feedwater compositions (ppm except where noted). 
Desalination concentrate from [65], and cooling tower water analysis from 1/14/2010 
analyses from SNL/CINT cooling tower water 

	
	

Desalination	
concentrate	

Cooling	tower	
water	

SiO2aq	 148	 123	
Na+	 2674	 152	
Ca2+	 589	 163	
Mg2+	 153	 27	
Cl‐	 4699	 105	
SO42‐	 1039	 139	
HCO3‐	 412	 374	
T	 24oC	 	
pH	 8.0	 8.9	
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4 ALGAE FLOC STRUCTURE UNDER IN A SHEAR FLOW  
 
4.1 INTRODUCTION 
Wyatt et al. (2012) studied the flocculation behavior of a freshwater alga (Chlorella zofingiensis) 
that shows promise for biofuels production.  They measured the effects of algae concentration, 
FeCl3 flocculant concentration, and pH on the flocculation efficiency of the algae under 
quiescent conditions.  They showed that for C. zofingiensis concentrations above 0.5 g/L, the 
concentration of FeCl3 required for flocculation becomes independent of algae concentration. 
The change in this relationship is indicative of a change in the dominant flocculation mechanism 
which is marked by the presence of a critical floc density (i.e., number of flocs per unit volume).  
In the stoichiometric regime, increasing the algae concentration (and thus, the FeCl3 
concentration) results in the formation of a larger number of coagulated algae flocs.  Increasing 
the algae and flocculant concentrations further leads to a point where the floc density is high 
enough (i.e., critical density) that they begin to interact with one another and form larger flocs.  
Once the large flocs are formed, they enmesh suspended algae and remove them as they settle.  
The formation of the larger flocs marks the change in flocculation mechanism from being 
dominated by coagulation by bridging to being dominated by sweep flocculation where the algae 
flocs sweep other suspended algae out of solution.  Floc size and structure, therefore, determined 
the settling time and solids removal efficiency.  
 
The rate of settling of a spherical particle is proportional to its density and to the square of its 
radius (or the cross-sectional area), according to Stokes’ law. A non-spherical floc with 
branching arms has a lower effective particle density and a larger effective cross-sectional area, 
influencing the speed with opposite effects [66].  Furthermore, it has been reported that fractal 
aggregates of microspheres can be many times faster than Stokes’ law predictions for a solid 
sphere with the equivalent volume [67]. Therefore, determination of the drag on flocs and the 
resulting differential settling rates that can lead to collisions and floc growth must include an 
understanding of the floc morphology.  Most processes, however, do not rely on quiescent 
settling to induce flocculation and shear is present in commercial processing of algae.  During 
shear the flocs are subjected to both aggregation and fragmentation brought on as the differential 
velocity in the region of interest either brings particles together or tears existing flocs apart.  It is 
possible that flocs can break and reform resulting in restructuring with time.  Eventually a steady 
state is reached. 
 
The branching nature of a floc can be described in terms of fractal dimensions,  a mathematical 
means of relating a characteristic dimension of the floc ( say the perimeter) to the projected area. 
Many experimental and modeling studies exist of the influence of shear on the fractal dimensions 
of flocculating colloidal particles.  Spicer and Pratsinis used approximately 1-micron-diameter 
polystyrene particles and an aluminum sulfate flocculant in a stirred tank to study the evolution 
of the floc structure with time [68].  They found that at high flocculant concentrations the steady-
state floc size distribution was self-preserving with respect to shear rate; although, this was not 
true at low flocculant concentrations.  They also observed that the average floc structure became 
less open (the fractal dimension changed) before attaining steady state due to restructuring.  
Spicer and Pratsinis also modeled the coagulation and fragmentation with a population balance 
model [69].  Serra et al. used polystyrene spheres in a NaCl aqueous solution sheared in a 
concentric cylinder Taylor-Couette device and found that, despite the fact that the final aggregate 
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size can depend on the primary particle concentration and the shear stress, no significant changes 
in the fractal dimensions occurred due to restructuring and that these dimensions remained 
unchanged for different values of the shear rate in the laminar region [70, 71].  More recently, 
Soos et al. looked at 10-micron-diameter polystyrene spheres in a Taylor-Couette device under 
turbulent conditions and showed that the time evolution of the particle cluster size distribution 
could be captured by standard population balance modeling [72].  They also examined the 
evolution with time of the perimeter fractal dimension; although, they destabilized the particles 
outside the Taylor-Couette apparatus and speculated that the shear experienced by pumping the 
dispersion into the apparatus caused significant restructuring.  Selomulya et al. examined 60- to 
810-nanometer diameter polystyrene spheres in both a Taylor-Couette device and a baffled 
stirred tank and measured the floc size and structure with small-angle light scattering [73, 74].  
They found that flocs of the smaller particles were more prone to restructuring when compared 
with those made up of larger primary particles particularly at low to moderate shear rates.  They 
performed a dimensional analysis to find a correlation among the particle properties (size, 
concentration, surface chemistry) and the steady-state aggregate properties (size and structure), 
showing that “larger or less dense flocs correspond to a stronger binding force or a lower level of 
applied shear.” Wang et al. further examined floc strength by measuring the structure of alum-
kaolin flocs with small angle laser light scattering at various agitation rates [75].  They 
concluded that strong, compact flocs play a key role in designing effective flocculation reactors 
and efficient water treatment.  Furthermore, they noted distinction of fractal dimensions after 
breakage, inconsistent with self-similarity of aggregates noted by Spicer et al. [76]. 
 
Despite the interest in modeling coagulation in algae production or wastewater treatment there 
has been no studies looking systematically at the effects of shear on the size and structure of 
algal flocs where the effect of the flocculant concentration and pH are well documented in 
quiescent systems.  Jarvis et al. looked at the effect of shear on fractal dimensions of natural 
organic matter using various coagulants and compared their results to model floc systems of 
monodisperse polystyrene particles [77]. Their results indicated that flocs formed with natural 
organic matter and iron precipitates were not dominated by pure charge neutralization as in the 
case of polystyrene/NaCl mixtures, but must include chemical bonds.  Our intent is to extend the 
work of Ref. [37] to describe the effects of flow on C. zofingiensis in the presence of FeCl3 and 
compare to a model system of polystyrene particles. 
 
In the next section we describe the algae culture used, the flow device, image processing to 
determine floc size and structure, and the fractal analysis.  The following section first defines the 
flow field through flow visualization and then through examination of a model polystyrene 
sphere system.  Algal floc size distributions and floc fractal dimensions are reported next as 
functions of shear rate.  In the last section we summarize our conclusions that our steady-state 
results for C. zofingiensis in the presence of FeCl3 closely follow those obtained here and by 
others for charge neutralized polystyrene microparticles  in shear environments. 
 
4.2 MATERIALS AND METHODS 
4.2.1 ALGAE CULTURE AND FLOCCULATION 
A culture of Chlorella zofingiensis was obtained from researchers at Arizona State University 
and was grown in BG-11 growth media (Table 5) [78].  The culture was maintained in a 
chemostat under controlled conditions (e.g., light (12 hours light/12 hours dark), temperature, 
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etc.) and was continuously agitated by a magnetic stir bar and by bubbling air enriched with 1% 
carbon dioxide through the culture.  Under these culture conditions, the algae are maintained in 
the log phase of the growth cycle at cell concentrations near 0.05 g/L dry weight [37]. 
 
Table 5.  Composition of BG-11 growth media [78]. 

Component	 Concentration	(mM)	
NaNO3 17.6	
K2HPO4	 0.22	

MgSO4	∙	7H2O	 0.03	
CaCl2	∙	2H2O	 0.20	

Citric	Acid	∙	H2O	 0.03	
Ammonium	Ferric	

Citrate	
0.02	

Na2EDTA	∙	2H2O	 0.002	
Na2CO3	 0.18	

Trace	Metals	 Cu,	Mn,	Zn,	etc.	
 
The Chlorella zofingiensis was flocculated by adding a quantity of ferric chloride (40% w/v 
solution obtained from Ricca Chemical Company, Arlington, TX) and adjusting the pH to 5-6 
using 0.1 N NaOH or 0.1 N HCl, both obtained from Acros Organics (New Jersey, USA).  All 
chemicals used were reagent grade.  The flocculated algae suspension was then immediately 
introduced into the Couette apparatus.  As soon as the algae suspension was introduced into the 
Couette, the rotation of the inner cylinder at a set speed was initiated.  The total time between 
algae flocculation and the beginning of the cylinder rotation was approximately 30 seconds.  The 
suspensions were then sheared for at least one hour at the lowest speeds and 30 minutes at the 
highest speeds before the floc structure was imaged. 
 
4.2.2 COUETTE CELL 
A concentric cylinder or Couette cell was constructed of clear acrylic for the experiments 
described here (Figure 7).  The cell consists of an inner cylinder having a diameter of 9.2 cm 
which rotates inside an outer cylinder having an inner diameter of 10.1 cm.  The annular gap in 
which the fluid is sheared is 0.9 cm.  The entire apparatus is 53 cm tall.  There are three sample 
ports located at heights of 7 cm, 27 cm and 47 cm from the bottom of the cell which allow for 
sample extraction during the experiment, if desired.  There are also two viewing ports located 17 
cm and 37 cm above the bottom of the device where a quartz window was mounted for better 
optical quality for visualization studies.  The inner cylinder is rotated by an electric motor 
controlled by a programmable digital controller and can rotate at speeds ranging from 0.01 
revolutions per second (rps) to 100 rps.  The bottom of the inner cylinder sits atop a brass 
bushing which allows for relatively friction free rotation and minimizes heat generation during 
the experiment.  
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Figure 7.  Schematic representation of the Couette cell used in the present study.   
 
Floc images were obtained via a Phantom v9.1 high speed camera (Vision Research, Wayne, 
New Jersey) using a 20x Mitutoyo microscope objective attached to the lens.  Lighting was 
provided from behind the Couette (facing the camera lens) so that the flocs imaged appear dark 
against a light background.  Images were captured at a speed of 100 frames per second with a 10 
µs exposure time.  
 
4.2.3 IMAGE ANALYSIS 
The images obtained from the test apparatus were analyzed using an image analysis script 
written in MatLab.  The raw image intensity was first inverted (i.e., black changed to white, 
white changed to black) to make the remaining analysis simpler (Figure 8a).  The background 
intensity was calculated using a moving average with a user specified disk size.  Once calculated 
for the entire image, the background was then subtracted (Figure 8b).  Next, the image was 
converted to a binary image using a user defined threshold intensity and the speckles of noise 
were removed (Figure 8c).  Finally, using a user defined intensity gradient threshold, flocs that 
were blurry or out of focus were removed leaving only focused flocs to be analyzed (Figure 8d).  
The parameters of area, perimeter, and major axis length (length of the major axis of an ellipse 
fit to the floc) for each floc were then calculated and added to a data table.  For each data set, a 
minimum of 1000 algae flocs were used in the analysis reported here. 
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Figure 8.  Example of image processing procedure showing the raw image (a.), inverted 
image with background subtracted (b.), binary image with noise removed (c.), and the 
final flocs that meet the sharpness criteria for analysis (d.).   
 
4.2.4 FLOC FRACTAL ANALYSIS 
The concepts of fractal geometry provide a mathematical means of describing the complex, 
irregular structure of particulate flocs.  In fractal analysis, a characteristic dimension of the floc 
such as the perimeter (P) can be related to the projected area (A) of the floc by 

 /2fDP A  (5) 

where Df is the perimeter-based fractal dimension of the floc.  The value of Df can be obtained by 
plotting the perimeter verses projected area of a distribution of flocs on a log-log plot.  The slope 
of a line fit to the data will have a value of Df/2 (Figure 9).  The value of Df will vary between 2 
(a line) and 1 (a circle – the projected area of a solid sphere).  Therefore, values of Df closer to 2 
are indicative of open, branched, and irregular floc structures while values closer to 1 indicate 
structures that are more densely packed. 



32 

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5

lo
g(
P
)

log(A)

Slope = Df/2

 
Figure 9.  Determination of the fractal dimension (Df) from the relationship between the 
floc perimeter and projected area. 
 
The fractal structure of flocs can alternatively be described by one- and two-dimensional fractal 
dimensions [79-82].  A one-dimensional fractal dimension (D1) can be determined from the 
relationship between the floc perimeter and the floc major axis length (l) by 

 1DP l  (6) 

Similary, a two –dimensional fractal dimension (D2) can be determined from the relationship 
between the projected area of the floc and the major axis length by 

 2DA l  (7) 

As with the perimeter-based fractal dimension, D1 and D2 can be determined from log-log plots 
of the respective variables where a line fit to the data will have a slope of either D1 or D2.  For a 
Euclidian object (e.g., circle), D1 = 1.  Values of D1 > 1 indicate a structure whose perimeter 
increases faster than the object length scale resulting in a complex object outline.  On the other 
hand, D2 = 2 for a Euclidian object such as a circle.  Values of D2 < 2 indicate that the projected 
area of an object increases slower than the square of its characteristic length scale.  As such, the 
projected area of larger objects is less than that of a Euclidian object of the same scale because of 
elongation or due to “holes” within the structure (i.e., flocs are not densely packed). 
 
4.3 RESULTS AND DISCUSSION 
4.3.1 TAYLOR-COUETTE FLOW VISUALIZATION 
Flow patterns in the custom made Couette cell were visualized by filling the cell with 
Kalliroscope particles (AQ-1000) and tap water at room temperature.  The cell was then run at a 
range of shear rates spanning those used in the floc structure experiments and images taken of 
the flow (Figure 10).  At the lowest shear rates studied here, the flow in the cell is well within the 
wavy vortex regime typical of Taylor-Couette flow fields.  As the speed of the inner cylinder is 
increased, the onset of turbulence is observed.  At the highest speeds tested the flow transitions 
to be completely turbulent. 
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Figure 10.  Images from a flow visualization study in the Couette cell used for the present 
study showing the wavy vortex regime, onset of turbulence, and fully turbulent regimes 
in a Couette flow. 
 
4.3.2 IMAGING A TEST SYSTEM 
Before studying algae floc structure in the Couette device, aggregation of 6 µm polystyrene 
particles in a 1.2 M NaCl solution was studied for comparison to published results.  Sulfate latex 
particles having diameter of 6 µm were obtained from Life Technologies (Grand Island, NY).  
The particles were suspended in a 1.2 M NaCl solution at a volume fraction of 6.7 x 10-3 for the 
aggregation studies.  Suspending the particles in a salt solution makes the particles neutrally 
buoyant as the salt solution density closely matches the density of the particles.  Further, the salt 
molecules screen electrostatic charges between particles, which encourages aggregation. 
 
Once made, the solution of particles was sonicated for 15 minutes to break up any aggregates 
formed.  The solution was then carefully introduced into the Couette device in a manner than 
minimized the shear stress imparted to the fluid.  The inner cylinder of the Couette began 
spinning at the desired speed immediately after the solution was introduced.  The time between 
sonication of the particle solution and initiation of shear in the Couette was about 30 seconds.  
The absence of initial aggregates was confirmed visually with the Phantom camera at the 
beginning of each test.   A sequence of images was then taken at specified time intervals to 
monitor the formation of the aggregates and enable an analysis of aggregate structure.  The 
images were then analyzed using the method described above and the 2-dimensional fractal 
dimension calculated (Equation 3).  For ease of comparison, the time dependence of the fractal 
dimension was examined in terms of a dimensionless time, t*, determined by 

 *t t   (8) 

where t is the time at which the measurement was taken, φ is the volume fraction of particles in 
solution, and γ is the applied shear rate.   This allows the comparison of data taken at various 
shear rates and particle concentrations on similar terms. 
 
Initially, there is a strong time dependence of the fractal dimension where the fractal dimension 
increases sharply (Figure 11).  As time proceeds, the aggregates reach a steady state size and 
structure and the fractal dimension likewise reaches a steady state value that is independent with 
time.  Similar trends were observed with other aggregate properties such as projected area, major 
axis length, and perimeter.  These results agree well, both quantitatively and qualitatively with 
results reported by Refs. [68, 83] that also studied flocculation of polystyrene microspheres. 
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Figure 11.  Time evolution of the fractal dimension of flocs composed of 6 µm 
polystyrene spheres in a 1.2 M NaCl solution at several shear rates. 
 
As the shear rate is increased in the Couette device, the aggregate fractal dimension decreases 
(Figure 12).  The added shear stresses in the fluid accompanying the higher shear rate cause the 
larger, higher fractal dimension aggregates to break up.  Further, the aggregates begin to elongate 
in the direction of flow which results in a lower overall fractal dimension.  Spicer and Pratsnis 
report a similar trend for the steady state average floc length with shear rate for polystyrene 
particles flocculated using alum [68].  The agreement between the present results obtained for 
polystyrene particles and those in the published literature give confidence in the experimental 
apparatus described here. 
 
4.3.3 ALGAE FLOC SIZE DISTRIBUTIONS 
Next, the floc size and structure of freshwater algae flocculated with ferric chloride at pH 5-6 
was studied over a range of shear rates spanning from 30 s-1 to 240 s-1.  The distribution of floc 
sizes for all shear rates studied is lognormal in nature (Figure 13).  At low shear rates, the 
distribution is quite broad and contains many very large flocs.  As the shear rate is increased, the 
increased shear stress causes the large flocs to break up and the distribution sharpens around a 
smaller floc size. 
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Figure 12.  Shear rate dependence of the steady state fractal dimension for 6 µm 
polystyrene particles in 1.2 M NaCl solution. 
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Figure 13.  Algae floc size distributions for several shear rates ranging from 30 s-1 to 240 
s-1 in a Taylor-Couette flow. 
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Figure 14.  Standard deviation of the distribution of floc sizes as a function of shear rate 
in a Taylor-Couette flow.  Error bars represent the error associated with the average of at 
least three measurements.   
 
The shape of the floc size distribution can be further understood by examining the width of the 
distribution (i.e., the standard deviation) as a function of shear rate.  This parameter gives a 
numerical value to the spread observed in floc sizes.  A power law relationship is observed 
between the standard deviation of the floc size and the shear rate (Figure 14).  At low shear rates, 
there is a strong dependence of the width of the distribution on shear rate.  This means that small 
changes to the applied shear rate will have dramatic effects on the size distribution of the 
associated flocs.  At high shear rates, however, the dependence is much weaker.  In the region of 
high shear rates, the distributions are narrow and changing the applied shear rate has little effect 
on the resulting size distribution. 
 
Next, the floc size distribution was examined in terms of a normalized floc size in the same 
manner as reported by [68].  If the floc size is normalized by the average floc size for each shear 
condition, the distributions collapse to a single curve (Figure 15).  Shear has no effect on the 
shape of the distribution when normalized in this manner, which makes it self-preserving with 
respect to shear.  Similar results have been reported for flocs of polystyrene particles with 
various flocculants [68, 70, 71].  The self-preserving nature of the floc size distribution is 
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important because it greatly simplifies the characterization of the steady state floc structure.  For 
a steady state floc size distribution that is self-preserving with respect to shear, the entire 
distribution can be obtained once the average floc size is known (or estimated). 
 
Further insight into the effect of shear on algae floc structure can be obtained by examining the 
largest floc present at each shear rate studied.  The largest floc present at a given shear rate 
indicates the largest floc that is able to withstand the shear stresses of the flow field without 
fragmenting into smaller flocs.  A power law relationship is observed between largest floc size 
and shear rate over the range studied here (Figure 16).  The dependence is much stronger at low 
shear rates as the flocs are both larger and have a more branched structure.  As the shear rate is 
increased, the additional shear stresses encountered by the flocs causes the flocs to fracture and 
restructure.  The effects of fracture and restructuring are greatly diminished at the higher shear 
rates (i.e., there is a much weaker dependence of floc size on shear rate). 
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Figure 15.  Normalized algae floc size distributions for shear rates ranging from 30 s-1 to 
240 s-1.  Normalizing the floc size by the average floc size results in all curves collapsing 
to a single distribution curve. 
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Figure 16.  Larges algae floc as a function of shear rate in a Taylor-Couette flow.  Points 
represent the average of at least three experiments and error bars represent one 
standard deviation. 
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4.3.4 ALGAE FLOC FRACTAL DIMENSION 
The perimeter-based fractal dimension has a value of 1.34 at low shear rates and increases 
linearly to a value of 1.41 at the highest shear rate studied here (Figure 17).  The relatively low 
value Df indicates that the algae flocs are relatively densely packed structures that have some 
degree of irregularity and branching associated with them.  As the shear rate increases, Df also 
increases which indicates that the floc structure becomes elongated under the additional shear 
stresses of the Taylor-Couette flow. 
 
The one- and two-dimensional fractal dimensions exhibit a power law dependence on shear rate 
over the range of shear rates studied here (Figure 17).  At the lowest shear rate D1 = 1.28 which 
indicates a structure whose perimeter increases faster than the floc length scale.  Thus, the 
perimeter is more complex than a Euclidian object such as a circle due to irregular, branched floc 
structure.  Further, the value of D2 at the lowest shear rate is 1.83 which further supports the 
branched, irregular structure of the algae flocs.  As the shear rate increases, both D1 and D2 
decrease in a power law fashion until D1 = 1.14 and D2 = 1.24 at the highest shear rate.  Under 
these shear conditions, the values of both D1 and D2 are much closer to those expected for a 
much less compact, elongated structure.  These results are consistent with results of the 
perimeter-based fractal dimension. 
 
Each of the fractal dimensions analyzed here provides complementary information in describing 
the structure of algae flocs in a Taylor-Couette flow.  In summary, at low shear rates the algae 
flocs are large, relatively dense, branched structures.  As the shear rate increases, the flocs are 
broken up and become elongated in the flow. 
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Figure 17.  Fractal dimensions calculated for algae flocs as a function of shear rate in a 
Taylor-Couette flow.  Data for 6 µm polystyrene microspheres is shown for comparison 
(open symbols). 
 
4.4 CONCLUSION 
The size distribution and structure of algae flocs are important as floc properties such as density 
and settling velocity are functions of the fractal dimension.  These properties, in turn, effect the 
economics of the harvesting process for algal biofuels production. 
 
Freshwater algae floc sizes and structures were measured in a Couette cell over a wide range of 
shear conditions.  Flocs sizes are found to be lognormally distributed and narrow around smaller 
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floc size as the shear rate is increased.  When examined in terms of a normalized floc size, the 
distributions for all shear rates collapse to a single curve.  The self-preserving nature of the 
distribution means that, once a single parameter is known about the flocs (i.e., average floc size), 
the entire distribution can be predicted independent of shear rate.  These results closely follow 
those obtained here and by others for polystyrene microparticles in shear environments. 
 
Three fractal dimensions were calculated to characterize the floc structure as a function of shear 
rate.  Low shear rates result in large, relatively densely packed flocs which break up and elongate 
as the shear rate is increased.  This is evidenced by power-law decreases in the one- and two-
dimensional fractal dimensions.  Further, the perimeter-based fractal dimension increases 
linearly with increasing shear rate as the flocs elongated and assume a more complex perimeter. 
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5 POPULATION BALANCE MODELS FOR FLOC GROWTH AND 
BREAKAGE 

The growth of flocs can be described in terms of an average floc size, but flocs are observed to 
vary in size over several orders of magnitude.  Collisions and floc growth through differential 
settling require some differentiation in settling velocity that comes with accounting for 
differences in floc size.  Further, the fraction of primary particles that do not become enmeshed 
in the largest flocs is an important component of separation efficiency.  For this reason and 
others, it is beneficial to predict more of the size distribution than just its first moment.  Here we 
discuss the use of sectional models [84] to describe the evolution of the floc size distribution.   
 
5.1 POPULATION BALANCE EQUATION 
The general particle balance equation (neglecting mass growth of individual particles) is  
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where nv is the number density of particles of volume v, cv is the velocity of particles of size v 
relative to the fluid velocity v, (v,v’) is the sticking probability for particles of size v and v’ and 
v(v,v’) is the collision frequency between particles of size v and v’.  Fragmentation can also 
occur with a rate F(v) and a distribution of fragments of size v from the breakup of a floc of size 
v’ being f(v,v’).   
 
Equation (9) can be written in terms of the number of primary particles in a floc, i. by noting that 
v = iv0 where v0 is the volume of the primary particle, a single algal cell.  The general particle 
balance equation is then written  
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where ni is the number density of particles of volume iv0, ci is the velocity of particles of size i 
relative to the fluid velocity v, (i,i’) is the sticking probability for particles of size i and i’ and 
net(i,i’) is the collision frequency between particles of size i and i’ including shear, differential 
sedimentation and any other relevant terms.  Fragmentation can also occur with a rate F(i) and a 
distribution of fragments of size i from the breakup of a floc of size i’ being f(i,i’).    
 
The description of the floc size in terms of the number of primary particles is based on the 
typically observed fractal scaling as described in Eqs. (74) and (75) of Sec. 9.  This description 
will be important in the specification of the collision kernels. 
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The settling velocity for a fractal floc is proportional to the volume (or mass) divided by the 
fractal or cross section radius  
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This description for the relative settling velocity does not account for the permeability of the 
floc.  When there is permeability, the floc settling velocity can be much greater, and this is 
significant for flocs with small fractal dimensions, in particular for those with D < 2.  A 
Brinkman viscosity approach to modeling the reduced drag associated with this increased 
permeability, but we do not account for this in the present work [67, 85].   

 

5.2 COLLISION KERNELS 
The rate of collision between flocs of size i and i’ is given by the product of the collision kernel 
times the number densities of flocs of each size as indicated in Eq. (10).  Relevant collision 
mechanisms for algae flocculation are shear and differential settling.   Brownian diffusion is also 
relevant for submicron particles.   
 
5.2.1 SHEAR-DRIVEN INTERACTIONS 
The collision frequency kernel associated with laminar shear is  
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where  is the rate of shear.  This is an approximate scaling of the collision frequency with the 
floc radius cubed or with i3/D.  In turbulent flows,  can be approximated as ()1/2 where  is the 
rate of turbulent energy dissipation and  is the fluid kinematic viscosity.   When considering jar 
tester configurations, the turbulent dissipation rate can be related to the impeller speed, , and 
the jar test geometry through the power number, P0, the jar volume, V, and the impeller diameter, 
dimp, [40] 
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The collision kernel given in Eq. (12) is referred to as the rectilinear kernel and does not take 
into account hydrodynamic interactions that tend to push flocs around each other.  Li and Logan 
evaluated the relative collision frequency for fractal flocs under shear and empirically 
determined the correction associated with this hydrodynamic interaction [86, 87].  We employ a 
simplified correlation    
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that indicates greater differences in the size of the floc lead to reduced collision frequencies.  
Evaluating the floc radii, rmin and rmax, in terms of the

 
size i and i’ with the prime denoting the 

smaller floc gives     
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for the fractal floc shear collision kernel.  If i’ is the smaller particle the shear kernel scaling for 
collisions with large flocs (based on largest particle times the correction) is  
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For spherical particles, the hydrodynamic correction is stronger due to reduced permeability, and 
Han and Lawler provide a correction referred to as the curvilinear kernel [88].  This is an 
adjustment to allow for particles to slide past each other along streamlines and the collision 
kernel is substantially reduced.  We do not consider nonporous spherical flocs in the present 
work. 
 
5.2.2 DIFFERENTIAL SETTLING-DRIVEN INTERACTIONS 
The collision frequency for differential settling is given by the product of the difference in the 
settling velocity and the cross-sectional area  
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 (17) 

where we have allowed both the size and density of the separate particles to vary.  The 
dependence of the kernel on the size is proportional to the size of the larger particle to the 
(D+1)/D power: i(D+1)/D; this is compared to the shear kernel where the dependence is to the 3/D 
power—roughly the same dependence. 
 
As above, this is a rectilinear kernel.  To account for the hydrodynamic interactions that tend to 
push small flocs out of the way of larger flocs, Li and Logan developed a correction for 
differential settling suitable for fractal flocs in analogy to Eq. (14) that reduces the collision 
frequency [87, 89].  As with Eq. (14) we employ a simpler correlation 
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Evaluating the floc radii, rmin and rmax, in terms of the
 
size i and i’ with the prime denoting the 

smaller floc gives       
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 (19) 

 
Han and Lawler have also provided corrections to the collision kernels to describe the reduced 
collision efficiency for spherical particles in differential settling associated with particles sliding 
past each other along streamlines [88].     
 
In general, in the present work we have used the collision kernels given in Eqs. (15) and (19).   
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5.3 BROWNIAN INTERACTIONS 
For small particles, Brownian diffusion can lead to perikinetic coagulation.  This is generally less 
significant for particles larger than one micron in water, but this is included here for 
completeness.   The Brownian collision frequency is  
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where k is the Boltzmann constant and T is the temperature. 

 
5.4 FRAGMENTATION KERNELS 
Flocs that are subject to hydrodynamic forces can fragment.  Hydrodynamic forces are generally 
expressed in terms of the shear as discussed in Sec. 5.2.1.  Floc breakage can be broken into two 
main effects: (1) large-scale floc breakage assumed to be the result of tensile stress acting to split 
the floc into smaller flocs and (2) surface erosion where individual cells or small flocs are 
removed from the surface by shear stresses across the floc surface.  This work will focus on 
large-scale floc breakage, also referred to as fragmentation, since this appears to be the 
significant mode of breakage.  In particular, the self-similarity observed in the Couette flow data 
as reported in Figure 15 will only occur when fragmentation and not erosion is the dominant 
breakage mechanism.  
 
Floc strength is often given in terms of the ratio of maximum or average particle sizes before and 
after a period of enhanced shear [90] 
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where d1 is the initial diameter with shear , d2 is the diameter after shear 2 is applied, C is a 
constant related to the floc strength and a is an exponent that gives the sensitivity of the floc 
breakage to the imposed shear.  Both a and C are measures of overall floc strength.  Typical 
values of a are in the range of 0.4 to 0.6 with some larger values reported. 
 
There is evidence that the size of the turbulence microscale plays a role in the breakup mode 
[91], and there are theoretical arguments for different values of the exponent a in Eq. (21) with 
values of a = 0.5 suggesting fragmentation in the sub-Kolmogorov range being dominant [90, 92, 
93], but in the present work we will treat this scaling as an unknown. 
 
5.4.1 POWER LAW FRAGMENTATION KERNELS 
There are at least two classes of fragmentation model. One model takes the general form 
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 (22) 

where kF is a breakage rate and b is related to a given above.  The characteristic length scale of 
the floc over which the shear acts is i1/D, but other exponents can appear as described below.  As 
an example of this power-law fragmentation kernel, Flesch, Spicer and Pratsinis observed that b 
= 1.6, a = 1/D and kF = 7e-4 gave good results in comparisons with their measurements [94].   
 



43 

The basic idea behind Eq. (22) is that fragmentation is limited by the frequency with which the 
shear stress,   , acting on a floc exceeds the floc strength.  There are several possible 
appraoches to describing the floc strength.  Two possible lines of reasonaing will be given 
below, and a third is given in the subsequent subsection. 
 
The force produced by this shear stress acting over the area of the floc is  
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We will assume here that this stress works against a single set of bonds that lead to a resistive 
force or floc strength like the product of the coordination number times a bond strength, kcFB.  
This leads to a breakage condition with sh c BF k F  corresponding to the dimensionless parameter 
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where the greater than unity shows the conditions that favor breakage.  Note that larger flocs are 
easier to break up, as are flocs with larger fractal dimensions and coordination numbers.  A 
fragmentation kernel expression would include the shear rate to give the correct dimensions and 
any power, aF, of the expression in Eq. (24) 
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The shear stress is equivalent to an energy per volume, and we can develop an analogous 
expression for shear energy driven fragmentation.  Instead of a bond force, a bond energy is 
introduced, dimensionally similar to the product of the force and particle length scale, EB ≈ a0 FB.  
The volume over which the shear energy acts is proportional to (i/b)3/D instead of the 2/D power 
appearing above.  Alternative form of the breakage criterion is then written  
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that is very similar to equation (24), but with a different power, 3/D versus 2/D, for the floc 
mass, i.  As above, larger flocs are easier to break up, as are flocs with larger fractal dimensions 
and coordination numbers.   
 
It is then possible to also write a power-law expression using Eq. (26) in analogy to Eq. (25), and 
this gives slightly different power dependence on the size   
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Since aE and aF are not determined by the physics provided here, it seems that there is no 
difference in the power law behaviors, just the requirement that the exponent on the shear rate be 
one greater than the exponent on i to give the proper rate dimensions.   
 
5.4.2 EXPONENTIAL (ARRHENIUS) FRAGMENTATION KERNELS 
The dimensionless parameter in Eq. (26) is written as a ratio of energies.  If we think of this in 
analogy to chemical reaction rates where the shear energy takes the place of the temperature, an 
Arrhenius-like expression for the rate of breakage might be  
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A somewhat similar form was proposed in Ref. [91] where the dimensionless parameter is  
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where the floc volume fraction, 
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 from Eq. (78), is used along with the coordination 

number, kc.  Reference [91] provides an expression for the coordination number 1.215c fk   of 

unknown origin that significantly affects the  kernel scaling with size.  The fragmentation kernel 
in Ref. [91]  is written  
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Since df is related to i, the number of primary particles in the floc, by 1/( / ) D

fd i b , it is possible 

to estimate the relative magnitude of the floc size where fragmentation dominates as a function 
of the shear rate.  This is done by expressing Eqs. (24), (26) and (29) in terms of the floc 
diameter.  For Eq. (24) this suggests the scaling  
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for fragmentation-dominated sizes while the scaling suggested by Eq. (26) is  
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Note that these are just based on dimensionless parameters and not precise values; a coefficient 
might vary significantly and is subsumed in the bond strength or energy here.  For Eq. (29) the 
use of the floc volume fraction and the floc-volume-fraction-dependent coordination number 
gives a scaling  
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where we have lumped many parameters into the parameter A.  The various exponents in Eqs. 
(31) to (33) can be compared with measured values of the exponent from Eq. (21).   
 
5.5 TIME SCALES FOR POPULATION EVOLUTION 
Using the kernels defined in the preceding sections in the right-hand side of Eq. (10) introduces 
certain time scales to the evolution.  These time scales are the inverse of the product n for the 
collision kernels and the F for the fragmentation kernel.  The characteristic time scales are those 
obtained by factoring out the size dependence and using the primary particle volume and initial 
particle volume fraction, , to provide a characteristic number density.  The shear and 
differential settling time scales are  
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The ratio of these time scales gives the approximate relative importance of shear-driven and 
differential-settling driven (subject to correction according to the size scaling of each 
mechanism).  The relative importance of differential settling compared to shear is characterized 
by  
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Written in terms of these time scales the integrals in Eq. (10) involve dimensionless size 
distributions normalized by the initial number of primary particles per volume.    An integral 
involving Eq. (15) is written  
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 and the similar integral involving Eq. (19) is written  
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(Recall that i’ is specified to be smaller than i in Eqs. (15) and (19).)  

 
5.6 CHARACTERIZING SIZE DISTRIBUTIONS 
The distribution n(i) can be characterized in terms of its moments  
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The zeroth and first moments are related to the total number of particles and the total volume of 
particles, for example.  Some terms involve fractional moments.  For example, the rate of 
differential settling is shown by Eq. (11) to depend on the 1– 1/D   moment.  If we introduce the 
settling velocity of a primary particle as  
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the settling flux term can be written 
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Integrating over the distribution n(i) for Eq. (10) yields  
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where terms that have more complex dependencies on the size distribution are left as integrals 
for now.  Eq. (41) describes the evolution of the number of particles or flocs and the right-hand 
side predicts the reduced number of flocs resulting from agglomeration.  Multiplying Eq. (10) by 
i leads to an equation that is related to the total volume of the flocs.  This is a conserved quantity 
when no particle growth is included and the right-hand side of such a transport equation is zero. 
 

For the simplest forms of the shear collision kernel (where there is no absolute value or specified 
smaller floc size), it is possible to express the right-hand side terms in terms of a sum of 
fractional moments.  For example, the right-hand side of Eq. (41) with the rectilinear shear 
kernel is  
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where N0 = M0(t = 0).  The fractional moments can be evaluated from the whole moments by 
interpolation (in the logarithms of the moments), and this is the basis of the method of moments 
with interpolative closure [95].   
 
5.7 SECTIONAL MODEL 
Equation (10) is an integro-differential equation that can be solved numerically in a variety of 
ways.  At one level, discussed separately, moments of the floc size distribution can be evolved.  
Knowledge of a sufficient number of moments will provide the necessary details regarding the 
evolution of the size distribution, but writing closed equations for moments has its own 
challenges that have been addressed in several ways [84, 95, 96].  Among other goals in the 
present work, we seek to understand the differing behavior of large and small flocs in order to 
understand flocculation efficiency. To this end, we discretize the distribution following the 
approach first rigorously derived by Gelbard and referred to commonly as the sectional method 
[84].  Following Gelbard, we introduce a conserved quantity, q, the net volume of primary 
particles in the present case, and make the assumption that it can be factored it into a time-
dependent and size-dependent term, ( )q t  and f’(i), 

 0 0( , ) ( , ) ( ) '( )iq i t iv n i t q t f i v  . (43) 
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The quantities q and f are discretized across the size domain into m sections.  The discretization 
is geometric with a factor of two in volume separating successive sections, and the centers of the 
sections are at i = 2l for the l-th section with l ranging from zero to an upper bound that needs to 
be large enough to track the mass of the largest flocs.  To describe the discretization of the 
sections, we define the values of i at the upper bound of the l-th section to be il = 2l+0.5, and the 
lower bound, il-1, is one half of this.  With Eq. (43) integrated across sections from il-1 to il the 
integrated volume within a section is 

  
1 1

0 0 1( ) ( , ) ( ) '( ) ( ) ( ) ( )
l l

l l

i i

l l l

i i

Q t q i t di q t v f i q t v f i f i
 

     . (44) 

This is the total volume (per volume of the fluid) contained in flocs of sizes between il = 2l-0.5 
and il = 2l+0.5.   In terms of Q the number distribution is  
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 

 (45) 

An assumption is made as to the functional form of f(i) that differentiates implementations of this 
model; in the present work, we define f(i) = i leading to volume distribution, q, assumed to be 
constant across each section and the number distribution to be declining as seen in Eq. (45).    
The uncertainties in the parameters appearing in Eq. (10) at this point are much larger than the 
uncertainties introduced through different forms for f(i) so that we do not address this further at 
this point. 
 
The sectional model is developed by identifying all combinations from Eq. (10) that lead to 
changes in q.  This is described in detail in Ref. [84], and here we provide the results breaking 
the collision contributions to the section in a manner that is similar to that of Gelbard as provided 
in Eq. (19) and Table II of Ref. [84].  The form provided here is limited to geometrically spaced 
sections with 12l li i  ; this discretization leads to considerable simplifications because collisions 
between small sections have a limited impact on larger sections.  The contributions of collisions 
to the changes in the sections, the first and second terms on the right-hand side of Eq. (10), is   
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 (46) 

The terms on the right-hand side represent, in order, the addition of primary particles to section l 
by agglomeration of smaller section flocs, agglomeration of smaller section flocs with section l, 
agglomerations within section l that lead to formation of larger flocs and agglomerations 
between section l and larger flocs that also contribute to larger sections.  Expressions for the 
collision kernels integrated over the sections are given in Table 6.  The first and second indices 
indicate the values of Ql that the collision kernel is multiplied by and the third index indicates the 
section to which that term contributes.  
 
Table 6. Integrated collision kernels for the case where sections are geometrically 
discretized with 12l li i  . 

Symbol Range of sections  Expression 
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The summations of the collision kernels over Qi in Eq. (46) can be thought of as integrals of 
these collision kernels over the floc size distribution.  Interpreted in this respect, the first term on 
the right hand side is the effect of the integral of the collision kernel over smaller sections times 
Ql-1.  The remaining terms represent the effect on Ql of the collision kernel integrated across the 
complete distribution times Ql.  Since the magnitude of Ql varies dramatically over the size 
distribution, it is sometimes helpful to think of the sectional equations in terms of the fractional 
change in the section.  Dividing Eq. (46) by Ql, we obtain the evolution equation for the 
fractional change  
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In Figure 18 and Figure 19, we have plotted the collision kernels for various parameter ranges.  
Each figure contains six subplots with rows corresponding to the shear, differential settling and 
orthokinetic collision kernels, respectively.  The shear and differential settling kernels are plotted 
for unity shear rates ( = 1/s) and unity differential density ( = 1 g/cm3).  The left-hand column 
of figures shows the kernel for the growth in a column associated with collisions between 
smaller flocs; this corresponds to 1

, 1,i l l  .  The right hand column contains the combination of 2
,i l  

through 4
,i l  that describes the addition of removal of mass from section l associated with 

collisions with all floc sizes.  Note that a part of the integrals of 2
,i l  and 3

,i l  lead to growth in 

section l while a portion of those integrals lead to flux from section l to larger sections.  For the 
largest section in the model, flux of mass to larger sections is not allowed (leading to an 
accumulation of mass in the largest section) so that the terms describing the flux to larger 
sections are set to zero.  In the figures, the right-hand column collision kernels show generally 
negative contributions except for the top row where the contribution is positive because of this 
prohibited flux to non-existent sections described in the previous sentence.  The fact that the 
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right-hand column collision kernels generally have negative net contributions shows that most 
collisions with aggregates in section l (including those with larger aggregates) lead to a flux to 
larger sections.   
 
Figure 18 shows the collision kernels for so-called rectilinear collisions.  The rectilinear collision 
kernel ignores the effect of hydrodynamic repulsion that is associated with the need to remove 
fluid between particles as they approach.  It has been shown that for spherical particles, the 
hydrodynamic repulsion leads to sharply reduced collision frequencies, in particular when the 
particles are of different size.  Analytical studies of the collision frequencies for spherical 
particles have led to so-called curvilinear collision kernel models that reduce the collision 
frequencies according to [88].   The curvilinear collision kernels are based on spherical particles, 
but the fractal flocs of interest here are porous and permeable.  This porosity/permeability allows 
some flow through the aggregate and reduces the hydrodynamic repulsion.  The need to 
accurately treat interactions of fractal aggregates has led to a number of models for collision 
kernels for permeable flocs.  We have used Eqs. (15) and (19) and refer to this model as the 
fractal collision kernel here; values are plotted in Figure 19.  In comparing the fractal collision 
kernel with the rectilinear kernel of Figure 18, there is appreciable narrowing of the effective 
range of collisions.  However, this narrowing is not as strong as the narrowing associated with 
the curvilinear collision kernel as is seen in Figure 20 where all three approaches are plotted for 
collisions with one size floc.  The fall-off in the collision frequency away from the same-size 
collision is substantially stronger for the curvilinear kernel.  Quantitatively, the fractal collision 
kernel is reduced by roughly one order of magnitude over a range of ten sections (210 in floc 
mass) at this fractal dimension of 2.33.  This is compared to the curvilinear kernel where the 
collision rate is reduced by one order of magnitude over a range of roughly five sections (25 in 
floc mass).   
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Figure 18.  Collision kernels for fractal aggregates with Df = 2.33, primary particle size of 
3 um, with rectilinear collisions assumed.  Kernels associated with shear, differential 
settling and Brownian motion are plotted in the top, middle and bottom rows, 
respectively.   
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Figure 19. Collision kernels for fractal aggregates with Df = 2.33, primary particle size of 3 
um, with Li and Logan adjustment to collision frequency. 
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Figure 20. A comparison of collision kernels for shear aggreagation with fractal 
aggregates with Df = 2.33, primary particle size of 3 um, and shear rate of 1/s. 
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5.8  FLOC GROWTH WITH THE SECTIONAL MODEL 
Here we present some basic results for floc growth without fragmentation using the sectional 
model as described in Eq. (46).  Figure 21 shows the early growth under shear with the collision 
kernels evaluated from Eq. (15).  The growth is expressed as one less than the average floc size 
following the discussion in Sec. 7.3 (c.f. Figure 29).  These simulations are based on 105 primary 
particles of size 30 m (large enough that perikinetic terms can be ignored) evolving under a 
shear rate of 0.1 s-1 with unity sticking probability ( = 1).  Simulations are run until the largest 
flocs get to be large enough to reduce the numerical accuracy of the simulation.  The shear 
collision kernels scale approximately as il-1

2+3/D so that as the range of floc sizes approaches a 
factor of 104 primary particles, the accuracy of the numerical solution will be reduced for double 
precision (roughly twelve digits of accuracy).  Accuracy was checked by stopping simulations 
before the error in mass conservation reached 10-3.   The key result from Figure 21 is that lower 
fractal dimensions result in more rapid growth as expected since the cross sectional area scales 
with il-1

3/D.  For a monodisperse distribution with fractal floc size, it can be shown that the 
growth diverges for finite time (c.f. Eq. (66)).   The fractal shear kernel actually results in a 
distribution that is closer to a power-law size distribution.  The number and volume distributions, 
ni and Qi, are shown in Figure 22 for three different times in the evolution of the case where Df = 
2.33.  The volume moment is almost flat at longer times, and this is represented by the higher 
moments diverging.  In addition to the first moment of the particles per floc, the fourth moment 
(particles to the fourth power per floc) is also shown in Figure 21 to indicate the gradual 
divergence of the higher moments when fragmentation does not occur.   
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Figure 21. Growth of floc size predictions using sectional model with shear kernel for 
different fractal dimensions (Df = 1.6, 1.8, 2.0, 2.33, 2.7 from left to right).  The left panel 
shows the evolution of the one less than the average particles per floc, while the right 
panel shows one less than the fourth moment of the particles per floc. 
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Figure 22.  Number (no symbols) and volume (with symbols) distributions for the 
simulation in Figure 21 with Df = 2.33 at three times expressed in terms of sh of Eq. (34). 
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Figure 23.  Growth of floc size prediction using sectional model with shear and Brownian 
kernels for fractal dimension of 2.33.   
 
In Sec. 7 the growth of flocs under a combined Brownian and shear (peri-kinetic and ortho-
kinetic) kernels will be discussed.  Here we carry out a similar simulation but use the particle 
size close to size of the algae cells, 3 m.  At 3 m, the Brownian kernel is less important than 
the shear kernel, but is not completely negligible as it is at 30 m.  Figure 23 shows a 
comparison of floc growth with 108 3 m and 105 30 m particles (giving the same volume 
fraction).  The added influence of the perikinetic kernel accelerates the early growth, but the 
growth scales similarly in time.  For comparison with Sec. 7 results, power laws early and late in 
the evolution are identified on Figure 23. 
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6 RESTRUCTURING OF CLUSTERS OF ADHESIVE PARTICLES DUE 

TO RANDOM FLUCTUATIONS 
 
6.1 INTRODUCTION 
Aggregates of fine particles are ubiquitous in nature and in industry. These aggregates grow 
through collision processes with rates determined by the combination of relative motion and 
effective cross-sectional area. In general, aggregates formed from well-defined primary particles 
(as opposed to coalescing liquid drops or bubbles) are observed to have fractal structures so that 
the effective radius of gyration is greater than that of a sphere of similar mass. Thus, a 
relationship between the mass, M, of an aggregate containing N primary particles of mass m

0
 and 

radius r
0
 and its radius of gyration R

g
 is: 

 
M
m

0
=N=k 









 
R

g

r
0

D
f

 (48) 

  
with k being a prefactor on the order of unity, and D

f
 being the standard mass fractal dimension. 

Such is the case for soot aggregates formed under explosive conditions and certain kinds of 
sooting flames [97-114] as well as other processes including flocculation in algal and waste 
water environments [115-118].  

 
For rigid aggregates, various collision regimes have been identified and these have been found to 
result in fractal dimensions that are characteristic of the particular collisional mechanism. For 
example, in the continuum regime, in which aggregates diffuse before collision, also known as 
diffusion-limited cluster aggregation (DLCA), a fractal dimension of ≈1.8 [97, 104, 106, 110, 
111, 113] (≈1.4−1.5 in 2D) [119] is observed for length scales just larger than the size of an 
individual particle up to nearly R

g
. In the free molecular regime, where aggregates assume 

ballistic trajectories between collisions, the fractal dimension increases to ≈1.95 when thermal 
forces are the driving mechanism [120-122]. As aggregates grow in size and are affected more 
significantly by local shear conditions, two processes have been observed to cause deviations 
from these trends [123-132] . First, fragmentation of aggregates can be caused by fluid drag 
forces exceeding the bond strengths of particles making up the aggregate. Secondly, drag-
imposed forces and torques can lead to restructuring of the aggregate. Both processes are 
strongly dependent on the exact multibody hydrodynamics that produce the drag forces, the 
nature and strength of the adhesive interactions between constituent particles, and the aggregate 
topology which controls the local strength of the aggregate, including the formation of multiple 
adhesive contacts and stress bearing structures.  

 
A large body of work has focused on the determination of the fractal dimension that 
characterizes various collisional processes, the kinetic exponent that describes the rate at which 
the average cluster mass grows with time, and the evolving size distribution of clusters[119]. 
More often than not, researchers have focused on the relatively simple case of a single fractal 
dimensional scaling given a specified aggregation mechanism. As an example, many simulations 
of diffusive systems of aggregating particles have been able to reproduce the DLCA scaling of 
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mass to size (D
f
≈1.8) seen in experiment. Alternatively, more elaborate flow conditions can 

complicate the aggregate structures, resulting in different fractal scaling laws at different length 
scales, even without restructuring [133-135]. One such case is the cluster dense regime. Due to 
the fractal nature of the growing structures, aggregation starting under dilute conditions can 
eventually lead to a situation where clusters are large enough to crowd each other and no longer 
collide along uncorrelated trajectories– a result of the reduction in the available free volume in 
the system (R

cluster
>N1/3). When this occurs, the fractal dimension can exhibit a shift from 1.8 to 

 2.6 [136], similar to the 3D percolation fractal dimension. Other cases where D
f
 shows a change 

with length scale have been observed in soot from laminar flames [134], where the aggregation 
mechanism becomes dependent on the height in the flame.  

 
To date, much of the simulation work on aggregating systems has been performed in a Monte-
Carlo framework where clusters are treated as idealized rigid entities. In such cases, the 
aggregates that are formed are normally simply connected; that is, every particle lies on a branch 
of a tree-like structure in which there are no closed loops. Topologically, these forms are 
relatively simple. The lack of closed loops allows for the exact specification of the constraint 
forces and torques, and one can make predictions about the locations at which clusters are likely 
to fragment or restructure under sufficient stress conditions [137, 138]. However, when closed 
loops are formed, the system becomes overspecified and the nature of the interaction potential 
becomes important. Stress can now be locked into the cluster structure. Under these conditions, 
particle dynamics simulations have an advantage over Monte-Carlo schemes since they allow for 
the determination of individual particle trajectories based on the solution of Newton’s laws. 
Restructuring length and timescales result from these trajectories rather than being included in 
the model in an ad hoc manner.  

 
In this work, we utilize a JKR-type adhesive potential [139-142] to describe the binary contacts 
that form between colliding adhesive particles. This potential resolves two-particle relative 
center of mass and angular motions and imposes constraints and damping terms on each mode. A 
method for thermostating this potential is presented. This approach to adhesive contacts provides 
a realistic description of the physical processes leading to the complex topologies encountered in 
aggregates of particles with semi-flexible contacts ranging from algae cells to colloids. The 
particle dynamics technique (i.e., Discrete Element Method – DEM) used in this work provides a 
realistic description of the physical processes governing aggregation and cluster restructuring in 
many practical situations, including aggregation of adhesive particles with flexible contacts in a 
liquid medium as well as restructuring and the formation of stress bearing structures within 
clusters.  

 
In the second section of this paper we describe the implementation of the adhesive model as well 
as simulation details and parameters. Following this we discuss various measures of restructuring 
we have employed including the evolution of the cluster radius of gyration R

g
, average 

coordination number and coordination number distributions, the pair correlation function g(r), 
the static structure factor S(q), and the formation of a stress-bearing backbone. 
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6.2 MODEL 
We simulate clusters of adhesive particles using discrete particle dynamics with LAMMPS, an 
open-source molecular dynamics package [143] . We model the particle dynamics with a 
Langevin equation of motion to generate individual particle trajectories. Hence, our simulations 
are of a Brownian Dynamics type. For systems of adhesive particles, we solve two sets of 
Langevin equations, one for translation and one for rotational degrees of freedom  

 m
i
 
dv

i

dt =−ζv
i
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ij
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Here m
i
 and I

i
 are the mass and moment inertia of particle i, ζ the friction coefficient of the 

particles in the solvent, v
i
 the particle velocity, F

ij
 and τ

ij
 the interparticle forces and torques, and 

ξ
i
, ϑ

ij
, and ϕ

ij
 the stochastic forces and torques that couple thermal fluctuations to the dissipative 

components of the particle-fluid and particle-particle interactions. We will discuss the latter 
below when we describe thermostating internal modes, but note that these terms are applied 
pairwise as indicated by the subscript ij; this is essential. For now we note that the random force 
due to thermal fluctuations in the fluid is given by standard Brownian dynamics, < >ξi

=0 and 

< >ξ
i
(t)ξ

i
(t') =2k

B
Tζδ(t−t'), where k

B
 is Boltzmann’s constant and T is the temperature.  

 
As can be gathered from the above discussion, for simplicity, we choose to model the 
hydrodynamic interactions using the “free-draining” assumption for particle drag. Thus, each 
particle feels a constant Stokes drag force, −ζv

i
, where ζ=−3πηd, and a corresponding delta-

function correlated random force consistent with fluctuation-dissipation balance which is 
standard for the Langevin-type thermostat of Brownian dynamics. Note that for this 
implementation, we do not allow particle-solvent interactions to impose torques on the individual 
particles. Again, we have not included multibody hydrodynamic effects in this work. The 
following section discusses the details of the particle-particle interactions. Since these 
interactions contain non-conservative (velocity-dependent) terms we shall also discuss 
thermostating inter-aggregate modes due to the pair-wise particle interactions. 
 

6.2.1 ADHESIVE POTENTIAL 
To handle particle interactions, we have implemented a JKR-based granular adhesive potential 
similar in form to that used by Marshall [141, 142] with components derived previously by 
Chokshi et al. [102], Dominik and Tielens [139, 140], Cleary [144] and Mindlin [145]. In this 
scheme, relative motion between spherical adhesive particle pairs is decomposed into normal 
[102], rolling [145, 146] shearing [139, 140], and twisting terms [142], with each mode of 
motion independently constrained. When no adhesion is present the relative motion between 
spherical particles of identical material in contact is standard [146].  
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where r
ij
=r

i
−r

j
 is the relative position vector, n

ij
=r

ij
/r

ij
 is the unit normal direction of the contact, 

r
ij
=|r

ij
| is the distance between particle centers, δ

ij
 is the distance between the particle surfaces 

along the normal, v
ij
=v

i
−v

j
 is the relative velocity of the two contacting particles, v

t
ij

 is the 

relative tangential surface velocity of the spheres, and ω
i
 is the rotational velocity of particle i.  

 
With adhesion present additional constraints on the relative rolling and twisting motions are 
present. The relative motion in these modes is determined by  

 Θ
tw

ij

= (ω
i
−ω

j
)⋅n

ij
 (54) 
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In the normal mode the magnitude of the force due to Hertzian contact of the linear elastic 
particles and the cohesive force due to adhesive surface energy, γ, is calculated according to 

 F
n

ij

=4F
c
 





 ( )a/a
0

3

− ( )a/a
0

3/2

, (56) 

  

with the cohesive force F
c
=3πγR. Here the contact radius between the spherical particles a, with 

equilibrium value a
0
= 





 
9πγR2

E

1/3

, is determined via the particle radii and the degree of overlap 

by inverting 

 δ
ij
 = 

a2

R−  
8πγDa

3 ,  (57) 

  

with R=2( 
1
d

j
+ 

1
d

i
), D= 

3
2(1−ν2)/Y, where Y is Young’s modulus and Poisson’s ratio ν[102, 147, 

148]. The normal force is discontinuous in that up to the point of contact of approaching 
particles, no force is felt, whereas at first contact there is a finite force present. Similarly, an 
adhesive particle pair that is separated has a non-zero tensile force at a separation distance 
greater than the sum of the particle radii [102].  

 
For contacting particles, a dissipative normal force is imposed on the normal mode of the form 

 F
n

ij
,diss

=−β
ij
|v

n
ij

|  (58) 
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where β
ij
=γ

n
R

H
m

eff
, γ

n
 is the normal damping coefficient, R

H
= ( )R ( )r

equil
−r

ij

1/2

 is the 

displacement from equilibrium using a Hertzian form following the viscoelastic model of 
Brilliantov et al. [147],  is the equilibrium separation, and m

eff
=(1/m

i
+1/m

j
)−1 is the effective 

mass of the two particles.  
 

The tangential (shear) force due to friction is calculated by 

 F
t
ij

=−k
s
Δ|s

t
ij

|  (59) 

where k
s
=8Ga, G the shear modulus, Δ|s

t
ij

| is the accumulated elastic tangential (shear) surface 

displacement of the particles obtained by integrating the surface relative velocities over the 
lifetime of the contact. This force is truncated when appropriate to satisfy the Coulomb friction 
criteria under the influence of a constant adhesive force F

t
ij

≤μF
n

ij

+F
c
. 

 

A torque, τ
t
i

= 
1
2d

i
F

t
ij

, is also associated with the tangential (shearing) mode in order to conserve 

angular momentum.  
 

Similarly, a rolling torque is calculated from  

 τ
r
i

=−k
r
Δ|s

r
ij

|  (60) 

where k
r
=4F

c
 ( )a/a

0

3/2

 and Δ|s
r
ij

| is the magnitude of the accumulated surface displacement of the 

two particles along a rolling mode (tangential surface velocities along same direction) obtained 
by integrating v

r
ij

 over the lifetime of the contact.  

 
Finally, for the twisting mode, a torque is assigned as  

 τ
tw

i

=−k
tw
Θ

tw
ij

 (61) 

where k
tw

=4Ga3 and Θ
tw

ij

 is the accumumulated angular displacement in the twisting mode. Note 

that no forces are associated with the rolling and twisting modes. 
 

For the current set of simulations, we impose a critical condition on the normal mode only. A 
critical condition indicates one for which the amount of displacement in the given mode is 
sufficient to break the adhesive contact between particles. Critical conditions are not imposed on 
rolling, shearing, and twisting modes since restructuring can become highly sensitive to the 
critical values in each mode. These are difficult to parameterize to any degree of experimental 
accuracy. We have implemented the necessary machinery to handle critical conditions for each 
mode into our model, though we are reserving a complete investigation of that topic for a future 
study.  
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6.2.2 THERMOSTATING INTERNAL MODES 
A new aspect of this work is the inclusion of thermostating for the adhesive contacts between 
pairs of particles. We have investigated restructuring for each set of simulation parameters both 
with and without thermostating of internal modes. In order to maintain a fluctuation-dissipation 
balance (F/D), each of the adhesive binary modes (normal, twist, roll, and shear) should receive 
stochastic forces and torques consistent with the dissipation experienced in that mode. A balance 
between thermal fluctuation and dissipation must be maintained on the particle-fluid interactions 
through the inclusion of a fluid drag force on particles in a solvent that corresponds to the 
stochastic thermal forces they receive from the fluid. This results in Brownian motion and 
diffusion for individual particles. However, when two or more particles are in contact, if we 
damp out the binary modes of relative motion, then if we measure the temperature for the system 
of particles based on the relative motion of the contacting particles, we will measure the “wrong” 
temperature relative to that specified due to the fluid fluctuations and measure based on 
translation degrees of freedom of the particles. Since the interparticle forces/torques are Newton-
pairs, this will not directly affect the external motion of the cluster of particles, since they are 
adhesively bound. However, it can indirectly affect it since adding energy back into these modes 
to maintain F/D can result in additional restructuring of the cluster, which can in turn affect 
particle mobility in the solvent.  

 

For simulations in which we incorporate a thermostat on the interparticle potentials, 
1
2kT of 

thermal energy is contained in each mode of relative motion (normal, twist, roll, shear) at 
thermal equilibrium by equipartition of energy. Furthermore, fluctuation-dissipation balance is 
maintained by setting the stochastic (thermostat) force/torque (cf. terms ϑ

ij
 and ϕ

ij
 in Equations 2 

and 3 above) in each mode in the standard, albeit pairwise, manner. The pairwise application of 
the stochastic force is key – Newton’s third law must be respected for the thermostating to be 
effective. For example, in the normal mode the stochastic force is assumed to be a Gaussian 
random variable chosen according to < >ϑ

ij
=0, < >ϑ

ij
(t)⋅ϑ

ij
(t') =2k

B
Tβ

ij
δ(t−t'), where β

ij
 is the 

damping coefficient in the normal mode. Similar considerations exist for the other pairwise 
modes which also include dissipative/damping forces. A primary objective of this work is to 
understand the influence of including thermal energy fluctuations in the binary modes in terms of 
aggregate evolution. 
 

6.2.3 INITIAL CLUSTER 
We begin each simulation with a single prebuilt fractal cluster generated from an algorithm that 
creates structures of a specified mass, N, fractal dimension, D

f
, and prefactor, k. For comparison 

to DLCA type flocs, we use D
f
=1.8 and k=1.3 [149]. Clusters are built in a hierarchical fashion, 

starting with dimers. At each step an N-mer is built out of two identical 
N
2-mers that are placed in 

random contact locations with each other. For each placement a test of M vs R
g
 is performed. If 

R
g
 falls within a tolerance (in our case 10%) of the value given by the fractal scaling law, the 

placement is accepted. The user is allowed to specify for what size the fractal scaling law will be 
checked. We use 16, consistent with previous work [150] that shows that the fractal scaling law 
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for DLCA aggregates begins to hold near a cluster size of N=16. The builder thus generates 
clusters of size N=2M, with M an integer. We choose to investigate clusters of mass N=128, 
which are large enough to exhibit fractal scaling over a significant size range while being small 
enough to allow for evolution of the structure within the available computational time. We are 
careful to set the interparticle spacing consistent with equilibrium separations determined from 
two particle runs using the same potential parameters used for restructuring simulations. This 
avoids any initial unstable response from particles being placed in high energy configurations at 
the beginning of the simulation. We use a single initial cluster configuration for all simulations. 
For each set of simulation parameters we perform a series of 10 independent simulations to allow 
for evolution of the structure over a statistically reasonable number of samples. For each 
simulation, we place the structure in a background solvent of a known viscosity and observe the 
evolution of the cluster structure as a function of time. The as built fractal cluster is not in 
equilibrium, that is its configuration is not a global energy minimum state which would be a 
collapsed compact structure with a large average coordination number per particle. The 
interparticle adhesive potential, described below, contains angular constraints that inhibit such 
collapse to a degree. Thermostating, both of the fluid-particle and interparticle interactions 
allows for a degree of restructuring.  

 

6.2.4 PARAMETERS 
For the sake of simplicity, we use dimensionless units for all potential parameters, where all 
particles are spherical with diameter, d=1 and mass m=1. Adhesive parameters are set to E=100, 
G=100, γ=1.0, γ

n
=10.0. To increase rigidity we have increased the strength of the twisting, 

shearing, and rolling modes each by a factor of 10, which is mathematically identical to 
increasing the shear moduli G by the same factor. The maximum stable time step is ≈3×10−4τ. As 
stated, this parameter set enables significant evolution of the cluster structure in the available 
computational time. Each simulation proceeds for 9×108 time steps, which corresponds to a total 
simulation time of t

sim
=2.7×105. We set the fluid viscosity to η=5.56×10−4 or 5.56×10−3 in all 

cases, consistent with other aggregation simulations that we have performed at initially low 
volume fractions with this set of parameters to be reported separately. The system temperature is 
varied from T=10−5 to 10−1. We have chosen damping times (τ

damp
) associated with dissipation of 

energy in each angular binary mode (rolling, twisting, shearing) that allow no more than four to 
five oscillations for any mode before falling below the thermal noise floor. While it may be 
desirable to overdamp each of these modes, doing so requires the use of smaller time steps than 
those used here in order to ensure system stability. We have chosen adhesive parameters that 
result in particles that stick on contact with unit probability under the influence of Brownian 
motion (using the chosen viscosity/temperature) and have a linear persistence length on the order 
of ten monomers at temperatures near T=10−3. As for any binding potential, each of the four 
motional terms is approximately harmonic near equilibrium. To maintain rigidity, a large 
“spring” constant is required, which necessitates correspondingly small time steps. It is nontrivial 
to choose parameters that allow for both relatively rigid contacts (large spring constants) and 
sufficient time evolution of the system within a reasonable computational time.  
 



62 

6.3 RESULTS 
We evaluate the results of cluster restructuring via several metrics. These include morphological 
changes observed in the restructured clusters as seen in late time configurations, time evolution 
of the cluster radius of gyration, R

g
, and the particle coordination numbers (number of adhesive 

contacts per particle) < >N , the formation of a stress supporting backbone, and the scaling of the 
mass with the size as determined from the logarithmic slope of the static structure factor, S(q) 
[150], and the pair correlation function, g(r).  

 

6.3.1 MORPHOLOGIES 
Restructuring is often evidenced by a decrease in a cluster’s linear extent given a constant 
particle number. More precisely, restructuring in systems of adhesive particles is an energy 
minimization process where a reduction in the ”size" of a cluster allows additional contacts and 
thus greater stability. Restructuring in this sense occurs when particles within a cluster are 
brought into contact by local rearrangement due to deterministic or stochastic forces leading to 
an energetically more stable structure than had previously formed. Figure 24 displays images of 
clusters observed during our simulations. . Figure 24 (a) shows the as-constructed cluster, a 
structure typical of the D

f
=1.8 extended, branched fractals observed in diffusion limited cluster-

cluster aggregation. . Figure 24 (b) through (f) show late time restructured clusters at 
temperatures from T−5 to T−2 and at a temperature of T=10−3 at two different viscosities 
η=5.56×10−3 and 5.56×10−4, without and with inclusion of a thermostat on the binary adhesive 
modes. Clearly, larger temperatures result in greater degrees of restructuring as does the 
inclusion of an internal thermostat at all temperatures. We notice several key features including 
the reduction of the overall linear size of the cluster, the formation of closed, stress-bearing loops 
at moderate temperatures, and the large degree of compaction with a highly increased 
coordination number at the highest temperatures.  

 
Restructuring is often thought of in terms of a morphological change such as an increase in D

f
 at 

all length scales, consistent with compaction resulting in a decrease in the size of the cluster. 
However, restructuring can and does produce topological changes that drastically increase the 
ability of a floc to withstand or handle fluid stress without that leading to large increases in the 
fractal dimension or significant changes in the size. Formation of closed loops is one example of 
this which we observe to be favored increasingly with rising temperature for simulations not 
invoking internal thermostating. Coarsening of a cluster can also occur, where branches collapse 
to form thicker stress-bearing backbones, affecting the fractal dimension only at small length 
scales. Compaction and possible coarsening occurs for simulations involving an internal 
thermostat, where closed stress-bearing loops are observed at the lowest temperature of T=10−5, 
but compaction and or coarsening appears to dominate at higher temperatures. The static 
structure factor can be used to distinguish whether the compaction is scale-invariant leading to a 
global increase in the fractal dimension or occurs only on small length scales. This is discussed 
in detail a later section.  
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Figure 24.  (a) Initial cluster configuration. (b)-(f) Late time cluster configurations 
(t=2.7×105) for each set of simulation parameters without (left) and with (right) internal 
thermostating. 
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Cluster restructuring often counterintuitively increases the effective density with increasing 
temperature up to the point of cluster instability, at which the particle contacts are broken and the 
cluster disintigrates or dissolves into the surrounding medium. Note that while fractal structural 
forms are generally "stable", they do not represent equilibrium structures sitting at well-defined 
energy minima, but are rather meta-stable and kinetically frustrated, their forms a result of the 
stochastic process of formation, existing in local energy minimum, not global energy minimum 
configurations. Further collapse to an energy minimum structure becomes inhibited by energetic 
barriers maintained either by multiple particle contacts or stress-bearing structures like closed 
loops. Heating a cluster up can increase internal cluster motions significantly, resulting in 
additional adhesive bond formation and structural adjustment. 
 

6.3.2 RADIUS OF GYRATION 
The "size" of a cluster of mass N is often calculated as the cluster radius of gyration, R

g
. Figure 

25 displays the time evolution of R
g
 for the clusters shown in Figure 24. The reduction observed 

in R
g
 is consistent with the restructuring we see in Figure 24, where clusters collapse to a greater 

or lesser degree. We observe that for each T and η, the internal thermostat leads to increased 
restructuring, significantly lowering R

g
 from its nonthermostated counterpart. The internal 

thermostat also results in more rapid rearrangement into the resulting structure. As we stated 
earlier, we expect particle rearrangement to be greater in clusters that include internal 

thermostating since each of the binary contact modes should contain 
1
2kT of thermal energy and 

not simply act as a damping mechanism. The reduction in R
g
 is a strong function of temperature 

with and without the internal thermostat included. As expected, larger temperatures lead to larger 
degrees of restructuring and smaller late time R

g
 values. We do not display data for temperatures 

above 10−2 since for T not much above that point, a critical point is reached and particle contacts 
are broken as the cluster disintegrates. At T=10−3, a change in viscosity does not have a large 
effect on the steady-state value of R

g
, but it has a larger effect on the standard deviation, 

indicating that a larger viscosity results in structures with larger variation in R
g
. Apparently, 

larger thermal forces which occur at higher viscosities even at the same temperature result in 
clusters with greater morphological variety. These larger forces may more easily push particles 
into irreversible adhesive trajectories, indicating that the larger the random force, the less 
deterministic the outcome. A change in R

g
 for a fractal structure can result from either an 

increase in the fractal dimension, D
f
, or the fractal prefactor k. The scaling of the static structure 

factor S(q) as a function of the wave vector q or the pair correlation function g(r) with r 
(discussed later) can be used to distinguish between these possibilities, since the scaling 
exponent is independent of k. 

 



65 

 
Figure 25. a) Time evolution of R

g
 for each set of simulation parameters without and with 

internal thermostating. Row 1 left: T=10−5,η=5.56×10−3, Row 1 right: T=10−4,η=5.56×10−3, 
Row 2 left: T=10−3,η=5.56×10−3, Row 2 right: T=10−3,η=5.56×10−4, Row 3: 
T=10−2,η=5.56×10−3 
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Figure 26.  a) Time evolution of the average coordination number for each set of 
simulation parameters without internal thermostating showing power law growth with 
time: T=10−5,η=5.56×10−3; T=10−4,η=5.56×10−3; T=10−3,η=5.56×10−3; T=10−3,η=5.56×10−4; 
T=10−2,η=5.56×10−3. b) Time evolution of the average coordination number for each set of 
simulation parameters with internal thermostating showing exponential trend. Colors are 
same as for a).  
 

6.3.3 COORDINATION NUMBER 
Figure 26 displays the time evolution of the average coordination number for the clusters shown 
in Figure 24. The original cluster structure has an average coodination number of 2, indicating a 
branched morphology, each branch a single particle thick. Lines and loops of particles also have 
coordination numbers of ≈2. As time proceeds, < >N

coord
 increases in a temperature dependent 

way. At the highest temperature of 10−2, without internal thermostating, the coordination number 
grows quickly to ≈3 and slowly increases to ≈3.5 at the latest times. Referring to Figure 24, we 
see that this coincides with the formation of several small closed loops within the cluster. The 
growth is consistent with a power law form in time <N

coord
>∝tα with α≈0.1. In fact, for all 

temperatures and viscosities used in this study, restructuring without an internal thermostat is 
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well described by a power law dynamic with a power α not far from 0.1, with only a weak 
increase in α with T. That is, there is a slow evolution of the coordination number even at the 
latest times. When internal thermostating is included at T=10−2, the restructuring is far more 
severe, leading to a steady state value of ≈5.2 for R

g
≈3 (Figure 25) and a very compact 

morphology (Figure 24). Interestingly, with internal thermostating on, a slightly higher late time 
coordination number is obtained for all lower temperatures, which appear to exponentially 
approach 6. The relaxation time constant is a decreasing function of the temperature and 
viscosity. The rate of convergence is due to the intensity of the forces experienced by the 
particles, which is viscosity dependent. The fact that the final value is nearly independent of the 
viscosity is due to restructuring being dominated by interparticle contacts at late times rather than 
by particle-fluid interactions. A coordination number near 6 has been observed for hard sphere 
glasses by Rintoul and Torquato [151].  This is an interesting interpretation of the restructuring 
that can be expected of systems of adhesive particles where, in limiting cases, the cluster 
collapses into a frustrated glass-like state. The coordination number of ≈5.2 at T=10−2 is lower 
than this due to the presence of sufficient thermal energy in the system to statistically break some 
of the interparticle contacts. Entropy gains, which favors fewer particle contacts (constraints) 
(TΔS) start to dominate over internal energy minimization which favors more contacts. At a 
temperature not much greater than 10−2, the entire cluster disintegrates. 

 
Figure 27 shows the evolution of individual coordination numbers for a few of these cases. For a 
temperature of 10−3 at η=5.56×10−3, the individual coordination numbers show nearly converged 
values with and without internal thermostating by the latest times. Without internal 
thermostating, approximately twice as many particles have a coordination number of 3 than 
either 2 or 4. With internal thermostating, the coordination numbers seem very well converged, 
with larger fluctuations consistent with the thermostat, though here there is nearly equivalent 
populations of coordination numbers of 5, 6, and 7, with a significant fraction of the particles 
with either lower or higher coordination numbers. That is, the distribution has a much larger 
spread in the case of the inclusion of an internal thermostat. 
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Figure 27. Time evolution of individual coordination numbers from 1 to 10 for 3 sets of 
simulation parameters without and with internal thermostating. Row 1 : 
T=10−5,η=5.56×10−3; Row 2 : T=10−3,η=5.56×10−3; Row 3 : T=10−2,η=5.56×10−4. Error bars 
are standard deviation of values based on 10 independent runs at each set of 
parameters. 
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6.3.4 STRUCTURE FACTOR 
In Figure 28 we display the static structure factor for clusters using each set of simulation 

parameters. The structure factor we define as S(Ԧq)=N−2| 
i=1

N
 exp(iԦq⋅Ԧr

i
)|2 over the wave vector 

Ԧq. A scalar form of S(Ԧq), S(q) is generated by averaging S(Ԧq) over all possible Ԧq with the same 
magnitude but different orientations. The structure factor is the reciprocal space analog to the 
pair-correlation function g(r). The real space variable r and its reciprocal-space counterpart q are 
related through q = 2r/r, indicating that given a specific value (frequency) of q, the presence of 
a particle at a distance r = 2/q from another particle will represent a particle ”in-phase" with the 
other at the given frequency. For fractal clusters, S(q) is known to scale as q−D

f for length scales 
between the monomer size and the cluster radius of gyration. For q<<1/Rg, S(q)≈1, since for very 
low frequencies, the entire cluster of particles is in phase. We utilize the structure factor to 
determine if restructuring has produced any changes in the fractal scaling of clusters as a 
function of q or alternatively r. Fry et al. [136] have shown that a noticeable change in fractal 
scaling occurs in the structure factor for systems of particles that aggregate initially as diffusion 
limited up to a point that the clusters crowd one another and the free volume approaches zero. In 
this case, for low q (large length scales), the scaling of S(q) changes from q−1.8 to q−2.6, indicating 
percolation in 3D, while at larger q values (smaller length scales), the q−1.8 trend remains. The 
resulting clusters are multi-fractal, having different scaling laws active at different length scales. 
S(q) is a powerful tool in shedding light on the fractal scaling in action at each length scale. For 
Figure 28, we plot S(q) and it’s logarithmic slope vs. r = 2/q, since it is simpler to determine 
length scales via r. D

f
 is the logarithmic slope of S(q) vs r. At the lowest temperature of T=10−5, 

D
f
 is fairly consistent over the pertinent range of length scales, averaging about 1.7±0.1, 

regardless of internal thermostating, consistent with D
f
 for the original cluster. As we expect at 

this low temperature, the structure has not been significantly affected by thermal motions, 
whether or not thermostating of the internal modes has been included. As discussed in the 
morphology section, internal thermostating at this temperature results in the formation of closed 
loops, but clearly does not have a large impact on the resulting structure factor. At the next 
highest temperature, T=10−4, some restructuring has occured, as evidenced by the increase in 
slope at large length scales to D

f
>2.0 for both thermostated and non-thermostated samples. For 

the thermostated case, restructuring is increased at smaller length scales consistent with 
coarsening, D

f
 varying between 2.3 and 2.8 for r between 2 and 6. For the unthermostated case, 

D
f
<2.0 and averaging near 1.5 for the same range, indicating that restructuring at larger length 

scales is favored. In all cases, we see that restructuring is greater when internal thermostating is 
included. At small length scales, when only dissipation is included (without stochastic thermal 
kicks) for binary adhesive modes, stochastic forces from the fluid are insufficient to restructure 
clusters at small length scales. When thermostating is included on these modes, however, 
restructuring can be initiated at all length scales. This trend continues to higher temperatures, in 
each case showing increased restructuring at large length scales for both inclusion and exclusion 
of internal mode thermostating, with inclusion resulting in restructuring at all length scales and 
exclusion lacking this feature. For T>10−5, we also observe the reduction in cluster R

g
 as noted 

earlier; this is manifest in a shift in the position of the large r plateau between simulations with 
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and without internal thermostating with the plateau denoting the length scales over which the 
entire aggregate is in phase. 

 

 
Figure 28. Average structure factor S(q) over 10 independent realizations of late time 
(t=2.7×105) simulations at each set of simulation parameters vs. r = 2/q. Logarithmic 
slope indicating the value of D

f
 for various regions is also shown. 
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6.4 CONCLUSION 
In this work the process of restructuring of fractal aggregates of adhesive particles has been 
investigated through a JKR-type adhesive model consistent with the original work of Dominik 
and Tielens [139, 140] . Restructuring is seen to be a dynamic process that is sensitive not only 
to the strength of the interparticle adhesive parameters, fluid viscosity, and temperature, but also 
to the exact way in which thermostating is treated. The authors argue that for adhesive potentials 
in which there is a dissipative term governing drag for a particular mode of motion (normal, 
shear, rolling, or twisting), a corresponding fluctuation term should be present. This coupling of 
fluctuation-dissipation is the basis for the Langevin thermostat that results in standard Brownian 
motion. Fluctuation-dissipation imposed on the adhesive particle modes ensures that 
"temperature" resolved at the particle scale is consistent with the thermostating temperature. 
When thermostating of adhesive modes is ignored, fractal aggregates of adhesive particles are 
seen to maintain the original fractal scaling of mass to radius at small length scales, but show 
enhanced fractal dimensions due to restructuring at large length scales only. When adhesive 
thermostating is included, fractal aggregates restructure to higher fractal dimensions at all length 
scales. These effects are observed in the evolving morphologies of the aggregates as well as the 
evolution of the static structure factor. The process of restructuring is very slow in the case of 
simple Brownian (no adhesive) thermostating and results in lower average coordination numbers 
than in the case of the inclusion of adhesive thermostating. At the latest simulation times, 
aggregates experiencing only Brownian thermostating exhibit structures that are still evolving as 
seen by the average coordination number while adhesively thermostated clusters appear to have 
reached steady-state forms. 
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7 PERI-/ORTHO-KINETIC AGGREGATION OF ADHESIVE PARTICLES 
 
7.1 INTRODUCTION 
Aggregation, agglomeration, coagulation, and flocculation are all terms used to describe the 
formation of clusters of small particles dispersed in a background fluid. Such processes have 
received a great deal of attention in the last several decades due their importance in a large 
number of industrial applications. The timescales for aggregate growth are a result of several key 
factors including the fluid flow conditions, the relative densities of the particles and the fluid, the 
particle concentration, and the evolving aggregate morphologies which are both affected by and 
affect the background flow. Evolving aggregate structures determine not only the drag forces felt 
by the aggregates but also the collision cross sections that leads to aggregate growth. At low 
shear rates, Brownian motion is dominant for aggregates of submicron length scales. Drag forces 
increase with size so that for sufficiently large particles or aggregates, shear forces become the 
dominant factor providing relative motion. This shift from perikinetic (Brownian or diffusive) to 
orthokinetic (shear-driven) aggregation is associated with a change in the scaling of the growth 
rate from roughly linear to something larger at a shear-rate dependent time. Previous works have 
found an exponential growth for coalescing drops under shear in agreement with Friedlander’s 
(Friedlander64) and other’s theoretical predictions based on the assumption of monomodal 
distributions. In addition to the aggregate motion, growth rates depend on the relative cross-
sectional area presented by aggregates. Aggregates formed from noncoalescing particles are 
observed to have fractal structures so that the effective linear size is greater than that expected 
for a sphere of the same mass. The standard relation between the mass, M, of an aggregate 
containing i primary particles of mass m

0
 and radius r

0
 and its radius of gyration R

g
 is: 

 M=im
0
=k 









 
R

g

r
0

D
f
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with k being a prefactor on the order of one, and D
f
 being the fractal dimension. For rigid 

(nonrestructuring) aggregates, various collision regimes have been identified with characteristic 
fractal dimensions. In the continuum regime, for diffusion limited cluster-cluster aggregation, a 
fractal dimension of ≈1.8 (≈1.4−1.5 in 2D) is observed, while for ballistically colliding 
aggregates as seen in the free molecular regime, the fractal dimension increases to ≈1.95 when 
thermal forces are the driving mechanism. As aggregates grow in size and are affected more 
significantly by shear flows, two processes lead to deviations from these trends. First, 
fragmentation of aggregates can be caused by fluid drag forces exceeding aggregate. Also, drag-
imposed bending moments acting on aggregates can cause restructuring and compaction, 
resulting in higher fractal dimensions. 
 
To understand the significance of each of these processes, we refer to the general Smoluchowski 
equation describing the change in particle size distribution due to collisions and fragmentation; 
this is given in Eq. (10) where the left hand side is simplified by the homogeneity assumed here.   
 
Using the relationship for perikinetic flocculation, the collision kernel can be written in terms of 
the number of primary particles as in Eq. (20). It is worth noting at this point that the terms in 
parentheses that depend on the aggregate size are alternately dominated by the smaller aggregate 



74 

and the larger aggregate. For the perikinetic kernel, it is common to assume that collisions are 
dominated by those between clusters of similar size, that is j≈i, leading to a distribution peaked at 
an average cluster size, similar in form to log-normal distrubtions. This quasi-monomodal 
assumption allows for the determination of an analytic relationship between the kernel 
homogeneity (λ) of the system which describes how the collision rate of clusters scales with their 
size:  

 β(Ni,Nj)∝Nλβ(i,j)  (63) 

 
and the kinetic exponent (z), which describes the growth of the average cluster size < >N  with 
time: 
 

< >N ∝tz       (64) 
 
that is: 

 z= 
1

1−λ  (65) 

 
a result that holds generally for quasi-monomodal distributions, not just for the perikinetic 
kernel. For the perikinetic kernel, λ=0, so that z=1, and the average aggregate size grows linearly 
in time, a well-known result. In later sections we will show evidence of aggregates in different 
size regimes having different fractal dimensions under certain conditions leading to the potential 
for an adjustment here that would account for the different fractal dimensions. 
 
For orthokinetic flocculation, the collision kernel is similarly written in Eq. (12). Within this 
kernel is the assumption that clusters of size i and j collide at a relative separation of R

p,i
+R

p,j
. 

While this may be approximately true for like sized clusters, collisions between large and small 
clusters (i>>j) may not follow this trend. While the perikinetic collision kernel has a relatively 
weak dependence on the aggregate size, the orthokinetic kernel scales with the cube of the radius 
of gyration, or with the size of the larger fragment as i3/D

f to leading order. There is thus a 
transition at larger aggregate sizes from perikinetic to orthokinetic aggregation whenever a shear 
flow is present. The size dependence of the shear kernel gives an exponential scaling with time 
under the assumption that the distribution remains monomodal for coalescing particles 
(Friedlander64, Friedlander-Smoke,Dust,Haze-2000). Interestingly, the interpretation of the 
relationship between z and λ changes for the orthokinetic kernel. The growth is no longer power 
law at finite times for fractal clusters, but follows the the form: 
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t
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That is, the common assumption of monodispersity would inevitably lead orthokinetically driven 
systems to divergent behavior at finite times, t’. However, as we shall show, a purely 
orthokinetic kernel does not produce a monomodal distribution, and this can have significant 
impact on the kinetics.  
 
7.2 MODEL 
For the purpose of this study, we model systems of aggregating particles using discrete particle 
dynamics with LAMMPS, an open-source molecular dynamics package developed and 
maintained at Sandia National Laboratories (Plimpton95). Specifically, we have implemented a 
granular adhesive potential similar in form to that used by Marshall (Marshall08) with 
components derived previously by Chokshi et al. (Chokshi 93), Dominic and Tielens 
(Dominic95), Cleary et al. (Cleary98), and Mindlin (Mindlin 49). In this scheme, relative motion 
between spherical adhesive particle pairs is deconstructed into normal (Chokshi93), rolling 
(Mindlin49, Cleary98), shearing (Dominic95), and twisting terms, with each mode of motion 
independently constrained. Potential parameters include the particle radii R and the adhesive 
surface energy γ as well as the elastic and shear moduli E and G, respectively. In the normal 
mode: 

 F
n
=4F

c
 





 ( )a/a
0

3

− ( )a/a
0

3/2

 (69) 

 
with the cutoff force F

c
=3πγR and the contact radius between the spherical particles a with 

equilibrium value a
0
= 





 
9πγR2

E

1/3

. The normal force is discontinuous in that up to the point of 

contact of approaching particles, no force is felt, whereas at first contact there is a finite force 
present. The same holds of an adhesive particle pair that is separated. For contacting particles, a 
dissipative normal force is imposed on the normal mode of form 

 F
n,diss

=−μ
n
v

n
 (70) 

 
where μ

n
=γ

n
r

H
m

eff
, v

n
 is the normal velocity of the two contacting particles,γ

n
 is the normal 

frictional coefficient, r
H
= [ ]r

eff
 ( )r

equil
−r

1/2

 is the displacement from equilibrium using a hertzian 

form, r
eff

=(1/r
i
+1/r

j
)−1 is the effective radius, r

equil
 is the equilibrium separation, r the actual 

separation, and m
eff

=(1/m
i
+1/m

j
)−1 is the effective mass of the two particle (i and j) system. 

Shearing forces are calculated as F
s
=−k

s
R

s
̂v

s
 where k

s
=8Ga, R

s
 is the accumulated surface 

displacement of the two particles along the shearing mode (tangential surface velocities opposite 

in direction), and ̂v
s
 is the current direction of the tangential surface velocity in the shear mode. 

Likewise, a torque is associated with the shearing mode τ
s
 in order to conserve angular 
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momentum. Similarly, a rolling torque is calculated as τ
r
=−k

r
R

r
 where k

r
=4F

c
 ( )a/a

0

3/2

 and R
r
 is 

the accumulated surface displacement of the two particles along a rolling mode (tangential 
surface velocities along same direction). Finally, for the twisting mode, a torque is assigned as 
τ

t
=−k

t
Θ

t
 where k

t
=4Ga3 and Θ

t
 is the accumumulated angular displacement in the twisting mode. 

Note that no forces are associated with the rolling and twisting modes. 
 
For the current set of simulations, we impose critical conditions on the normal mode only, since 
the resulting restructuring and fragmentation mechanisms can become highly sensitive to the 
choice of critical conditions for each mode. These critical conditions are difficult to parameterize 
to any degree of experimental accuracy. We have implemented the necessary machinery to 
handle critical conditions for each mode, however, but are reserving a complete investigation of 
that topic for a future study. We have chosen damping times (τ

damp
) for each mode that allow no 

more than 4-5 oscillations for any mode before falling below the thermal noise floor. While it 
may be desirable to overdamp each of these modes, doing so requires the use of smaller 
timesteps than those used here in order to ensure system stability. We have chosen adhesive 
parameters that results in particles that adhere with unit probability under the influence of 
brownian motion (using the chosen viscosity/temperature) and have a linear persistence length 
on the order of ten monomers. As for any binding potential, each of the four motional terms is 
approximately harmonic near equilibrium. To maintain rigidity, a large "spring" constant is 
required, which necessitates correspondingly small timesteps. It is notrivial to choose parameters 
that all for both relatively rigid contacts (large spring constants) and sufficient time evolution of 
the system within a reasonable computational time. That is, for initially dilute volume fractions 
of particles, which are the systems of interest, it is important to simulate the system for enough 
time to grow large clusters. In most cases, a brownian kernel is included in our aggregation 
simulations via a langevin thermostat. For simplicity, we choose to employ the free-draining 
assumption for particle drag, where each particle feels a drag force F

drag
=−3πηd and 

corresponding delta-function correlated random force F
r
, consistent with fluctuation dissipation 

and standard for the langevin thermostat. We are aware that multiple particle hydrodynamic 
effects may significantly impact the aggregation process, and we are currently in the process of 
using a coupled Computational Fluid Dynamics/ LAMMPS code to study hydrodynamic 
interactions between clusters. However, current computational limitations make such a study 
necessarily limited to the interaction between a small number of at most moderately sized 
clusters. For these studies, a purely brownian kernel, ran at T=10−3 setss sets a standard for the 
speed at which aggregation can proceed, that is the slowest mechanism used.  
 
The majority of our simulations have involved initially monodisperse dilute (φ=10−3) systems of 
100,000 particles. For the sake of simplicity, we use scaled units, where all particles are spherical 
with diameter, d=1 and mass m=1. For most of our simulations, we set T=10−3 and η=5.56x10−3. 
As a sidenote, this choice of particle parameters makes the diffusive time of monomers τ

D
=13.1τ 

and the momentum relaxation time τ
B
=19.1τ. Due to the low volume fraction of the system, this 

does not result in Ballistic rather than Diffusive Cluster-Cluster aggregation, even at the earliest 
times, since there is an initial separation between particles on the order of 10 diameters, 
necessitating on average several diffusive times before monomers collide and adhere. Adhesive 
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parameters are set to E=100, G=100, γ=1.0, γ
n
=10.0. To increase rigidity we have increased the 

strength of the twisting, shearing, and rolling mode torques each by a factor of 10, which is 
mathematically identical to increasing the shear moduli G by the same factor. The maximum 
stable timestep is ≈10−4τ. As stated, this parameter set enables significant evolution of the cluster 
size distribution in the available computational time. With 128 processors we are able to realize 
on the order of 300M timesteps (3x104τ) in a walltime of 96 hr. In some cases, multiple wall-
times have been necessary to reach a desirable end-point. For a given brownian kernel (T, μ), we 
then add an additional orthokinetic kernel by choosing a monomer Peclet number (Pe), defined 
as: 

 Pe
0
=τ

D,0
γ'  (71) 

where γ' is the background fluid shear rate and the monomer diffusive time, τ
D,0

, is given by: 

 τ
D,0

= 
3πηd3

4k
B
T  (72) 

 
All simulations are run at constant shear rate, so that due to cluster growth, the Peclet number for 
clusters grows with time: 
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As clusters grow they feel increasing amounts of shear stress which can result in both 
restructuring and fragmentation. These in turn affect the fractal dimension, kinetics of growth, 
and developing cluster size distributions. 
 
7.3 RESULTS 
Of primary interest are two related descriptions of the aggregation process in these sheared 
systems. The first is the kinetics, that is the evolution or the way the system develops over time, 
which can be observed through the growth of the average cluster size, the cluster size 
distributions, and other key parameters. Secondly, we are interested in the structure of these 
systems, the morphology of sheared flocs as seen throught the fractal dimension, the average 
coordination number, etc. Obviously, these two concepts are linked. Shearing a system of 
aggregating particles can affect the structure of the flocs that are formed which can in turn affect 
the rate at which flocs of certain sizes aggregate. The relative intensity of perikinetic vs. 
orthokinetic aggregation kernels is also important. Additionally, finite rigidity plays a role. 
Beyond a certain size limit, aggregates will tend to restructure or fragment, possibly leading to 
the development of a steady state size distribution. The model we have introduced accounts for 
restructuring and potentially fragmentation; it also allows the time scale for those phenomena to 
appear naturally as a function of system parameters. 
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Figure 29.  Growth of scaled average cluster size < >N −1 vs. t for diffusively driven Pe

0
=0 

and sheared systems with Pe
0
 = 10−3 to 0.2. Monodisperse orthokinetic predictions are 

also shown for the case of Pe
0
 = 0.1. 

 
In Figure 29 we present results for the growth of the average cluster size as a function of time for 
sheared systems. 5 different shear rates have been chosen, reported here via the monomer Peclet 
number (Pe

0
=τ

D,0
γ' ), where τ

D,0
 is the monomer diffusive time, in this case ≈13.09τ. This 

figure displays the growth of the scaled average cluster size for each of these shear rates in log-
log scale, where by scaled we mean the average size minus 1. It is well-known that since the 
system is initiated as a monodisperse system of monomers (average size 1), the kinetics is best 
interpreted through the growth of the scaled average cluster. Results for Pe

0
>0.2 are not shown, 

since in that range, no significant cluster growth is observed. Rather, the shear forces are 
sufficient to pull apart a dimer, leaving the system primarily composed of monomers; dimers and 
larger clusters simply cannot form. Figure 29 also shows a power law fit to the late time growth 
curves for each shear rate indicating the kinetic exponent z. Both Pe

0
=0 and 10−3 have z≈1 as we 

would expect for systems with a predominately perikinetic kernel. Pe
0
=10−2 shows an 

accelerated kinetics where the kinetic exponent rises from 1 at early times to ≈1.35 at the latest 
times simulated. The higher value of z is a result of the shift from a perikinetic to an orthokinetic 
mechanism. As stated earlier, this is expected since shear becomes dominant over diffusion as 
the shear rate increases. For Pe

0
=10−1, a large increase in the kinetic exponent is observed, rising 

from ≈1 to 1.74 at the latest times simulated. Doubling the shear rate to Pe
0
=2×10−1 increase z to 

2.10. It is clear that we do not observe kinetics that are well described as exponential growth 
(coalescence/monodisperse/orthokinetic) or runaway growth (fractal/monodisperse/orthokinetic) 
as predicted for purely orthokinetic kernels. However, for the case of Pe0 = 0.1, this is not 
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surprising since the divergence time predicted from the above monodisperse orthokinetic theory 
at this shear rate would be t’ ≈ 106, well past our latest simulation time. Of course, this may also 
be affected by the presence of a perikinetic component, restructuring, fragmentation, or a lack of 
isotropy in the aggregation mechanism. The first of these is unlikely since the perikinetic kernel 
becomes less important as the cluster size increases, and the power law fits well describe the 
growth curves from intermediate to large size clusters present at the end of each run for each 
shear rate. Restructuring certainly can influence the growth rates, but according to theory, 
coalescencing clusters (D

f
=3.0) represents the slowest form of orthokinetic aggregation, with 

D
f
<3.0 showing runaway growth (divergent at finite times). Fragmentation is also not likely the 

case, as restructuring is favored over fragmentation with this set of parameters. We propose that 
the primary reason that aggregation kinetics is better described by power law growth than 
exponential is the loss of isotropy in the aggregation kernel. That is, the flow constrains the 
cluster trajectories to reduce the collision cross-section of clusters by aligning them into shear 
planes due to the formation of Jeffreys orbits. We will discuss this more later.  Finite size affects 
are also not to blame as we have run simulations at a variety of system sizes with similar power 
law growth. 
 
Figure 30 to Figure 32 show cluster mass (N) vs. radius of gyration (R

g
) data for the ensemble of 

clusters seen at three different shear rates (Pe
0
=0,10−2, and 10−1 ) and at a range of times. The 

mass fractal dimension D
f
 is determined as the slope of the best fit line through the data in log-

log. In Figure 30 we observe a fractal dimension of ≈1.6 for small cluster sizes at all times for 
Pe

0
=0, which is the regime of diffusion limited aggregation (DLCA). We know from previous 

studies that there are significant variations in the fractal mass/size scaling relationship for small 
clusters, specifically for DLCA aggregates when N<16, thus a slightly reduced D

f
 may be 

expected. For intermediate to large clusters at intermediate times, we observe D
f
=1.8, consistent 

with standard DLCA aggregates as observed in a host of previous studies. The fractal dimension 
evolves to D

f
=2.0 at late simulation times for large clusters, evidencing some level of 

restructuring for large clusters, a result of the semi-rigid adhesive parameter set used in this 
study.  Figure 31 displays results for Pe

0
=10−2, where we observe some interesting features. 

Beyond N>10, the spread of the data increases, which we attribute to a bifurcation in the possible 
cluster structures; a spread in D

f
 develops. At each of the times shown, we obtain two different 

power law fits to the data, one with D
f
≈1.3 for all small clusters of size N<10 and extending 

beyond this into the lower lobe of the data for  
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Figure 30.  Mass N vs. radius of gyration R

g
 for ensemble of clusters in diffusive system 

at t = 30,000τ. Power law fit shows D
f
.. 

 
N>10. We also find a fit to the upper lobe of the ensemble for N>10 with D

f
 evolving from 2.2 at 

early times to 2.7 at late times. Several physical processes with competing timescales are at 
work. Steady shear favors the formation of lower D

f
 aggregates for clusters small enough that 

shear stresses are insufficient to lead to significant cluster fragmentation or restructuring. This is 
due to the fact that starting at the point when dimers form from the initial monomer population, 
clusters begin to orient themselves in the shear flow so that they rotate with the axis of rotation 
parallel to the vorticity direction; that is, clusters take on Jeffreys orbits. Since the particle 
velocities within a rotating cluster are larger at the edges furthest from axis, cluster collision and 
subsequent aggregation will favor long, narrow, highly anisotropic clusters with low D

f

..Competing with this is the fact that for high shear rates and/or larger aggregates, shear stresses 
cause restructuring in the clusters, increasing D

f
, reducing anisotropy in the shear gradient plane 

where shear torques are strongest. Due to complex hydrodynamic interactions and competing 
collisional/orientational/restructuring timescales, the presence of at least some restructuring into 
the vorticity direction can occur. We would expect and do observe (shown later) that restructured 
clusters are thinner in the vorticity direction than in the shear and shear gradient directions. 
Figure 32, for Pe

0
=10−1 shows similar features to Figure 31, with the bifurcation in D

f
 even more 

apparent than for Pe
0
=10−2. The lower lobe still shows D

f
≈1.3, but the upper lobe now has 

D
f
≈2.8, very near the limit of a completely restructured, nearly coalesced (D

f
=3.0) cluster, even 

at relatively early times. Clearly, this is a result of larger shear stresses. For these systems there 
are several timescales involved, including a diffusive, shear, collisional, and restructuring 
timescale. Due to the statistical nature of the aggregation and random configuration of the 
system, clusters can collide with other clusters at any stage during the process of their 
restructuring. This collision can then influence the restructuring process in a complex way. What 
is clear is that quasi-linear clusters are not stable for any reasonable amount of time above a  
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Figure 31.  Mass N vs. radius of gyration R

g
 as in Figure 30 or sheared system at 

Pe
0
=10−2 at t = 30,000τ.  Power law fit shows D

f
.. Bifurcation in ensemble apparent for 

clusters above N ≈ 10. 
 
 
 
 

 
Figure 32.  Mass N vs. radius of gyration R

g
 as in Figure 30 or sheared system at 

Pe
0
=10−1 at t = 21,000τ.  Power law fit shows D

f
..  Bifurcation more apparent. 
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Figure 33.  For Pe0=10−1, shown in Figure 32, fraction of mass of clusters with small Rg, 

large Rg with low Df, and large Rg with high Df.  Rg,crit ≈2 is the radius of gyration at which 
bifurcation of the ensemble is observed.  <k>g is the geometric average of the prefactors 
found from the two branches of the ensemble with Rg>Rg,crit.  <Df> is the arithmetic 
average of the fractal dimension of the two branches above Rg,crit. 
 
certain size since the shear will tend to restructure them quickly, and compact structures are 
unlikely for N<5 due to Jeffrey’s orbits. In the intermediate size range, clusters tend to fall onto 
one of the two distributions (quasi-linear or compact), but the division is not sharp, indicating a 
spread of restructuring times, and an overlap in timescales between that required for restructuring 
and that required for a collision with another cluster.  Figure 33 displays the time evolution of the 
populations of clusters in three regimes for the case of Pe0 = 0.1. The first is for clusters that lie 
below the length scale of bifurcation (Rg ≈ 2).  The second for the clusters that have Rg>2 but lie 
along the original Df=1.3 branch.  The final is for the clusters with Rg>2 but Df=2.8.  At late 
times, nearly all of the mass ends up in these large Df, highly restructured flocs.     
 
Figure 34 (a) shows cluster size distributions for t=0 to t=30,000τ for the perikinetic case plotted 
as n(N) or the number density of cluster in a range of size N vs. N, where for statistical purposes, 
clusters have been binned into bins with exponential spacing. The results are similar to those 
seen from Monte Carlo simulations of diffusion limited cluster-cluster aggregation In Figure 34 
(b) we scale the cluster size N (x-axis) by the average size < >N  at the time of the sample and 

multiply n(N) by < >N
2

, which collapses the data for t>6000 onto a master curve of the form 
Ax−λexp [ ]− ( )1−λ x  with λ the aggregation homogeneity. We remove the earliest time data since 
at early times, the size distribution has not yet converged to a self-preserving form.  For a 
perikinetic kernel, we expect to get λ=0, and we find λ≈−0.05 for N/ < >N >1, the valid range of 
this scaling form. In reality, a fit to the entire distribution gives nearly the same fit with λ≈−0.07. 
In either case, the results are in good agreement with perikinetic expectations. 
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Figure 34.  a) (top) Evolution of cluster size distributions for diffusive system Pe

0
=0 from 

t = 0 to t = 30,000τ b) (bottom) cluster size distributions with size N normalized by 
average size, < >N , and number of clusters of size N, n(N), multiplied by <N>2. Collapse 
onto master curve is apparent. Fits to scaling form with prefactor, A, and homogeneity, λ, 
are also displayed. 
 
Figure 35(a) shows size distribution data for the case of Pe

0
=0.1. Here the shape of the 

distribution is quite different than the perikinetic case and is clearly better described as a power 
law distribution with perhaps an exponential fall off for the largest clusters. It is obviously not 
similar to a monomodal distribution, which could in part explain the differences we observe 
between our kinetics and theoretical predictions of exponential or runaway kinetics for 
orthokinetic kernels. If collisions are not dominated by clusters of similar sizes colliding then the 
Smoluchowski equation cannot be collapsed onto a single term and the evolution of the average 
cluster size cannot be determined analytically even with the simple assumptions of the  
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Figure 35. a) (top) Evolution of cluster size distributions for sheared system at Pe0=10-1  
from t = 0 to t = 21,000τ b) (middle) cluster size distributions with size N normalized by 
average size, <N>, and number of clusters of size N, n(N), multiplied by <N>2. Size 
distributions do not collapse well onto master curve c) (bottom) cluster size distributions 
with scaled size, N−1, normalized by scaled average size, <N>-1, and number of clusters 
of scaled size N−1, n(N−1), multiplied by (<N>-1)2. Size distributions collapse somewhat 
better. Fit to scaling form gives λ=0.82 (not shown). 
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orthokinetic kernel. This would be true whether or not Df<3 (coalescence). Recent population 
balance studies by this group indicate that when restructuring is not included as part of the 
kernel, power-law distributions are observed when using orthokinetic kernels. In Figure 35(b) we 
attempt to collapse our size distribution data onto a scaling form with little success. This is 
consistent with recent orthokinetic studies that show difference in early time orthokinetic 
behavior to late time. However, if one takes into account, as we do in the kinetics results, that the 
average size begins at 1, and instead scale by the average scaled cluster size < >N −1, we do get 
the late time data to collapse somewhat better as seen in Figure 35(c). Here we find λ≈0.82. 
Using the relation z = (1 – )-1, we would expect z≈5.6. However, we have previously seen that 
even at the latest times for this shear rate z<2. This indicates a break in the relation between z and 
λ, where if we remember the relation was derived by assuming a quasi-monodisperse size 
distribution. This provides some further support to the notion that the monodisperse size 
distribution is inconsistent with the orthokinetic kernel. 
 
Figure 36(a)-(c) shows the evolution of the coordination numbers of particles (number of 
adhesive contacts) for the same systems as in Figure 30 through Figure 32. For the perikinetic 
case, Figure 36(a), the average coordination number begins at 0 (monodisperse system of 
monomers), grows to 1 (mostly dimers), and shifts to 2 at late times with a small number of 
particles with coordination number 3 and 4 at late times. A coordination number of 2 is 
consistent with extended fractal structures, in this case with D

f
≈1.6. We see similar evolution at 

Pe
0
=10−2, with the difference that for late times the population of particles with coordination 

numbers 3 and 4 is increased. This is consistent with the larger fractal dimension D
f
≈2.1 we 

observe at this shear rate at late times for large clusters. Finally, in Figure 36(c) we observe that 
the average coordination number does not remain at 2 but shifts to 6 or higher at late times 
indicating significant restructuring and compactification, which we confirm through the fractal 
dimension of Df = 2.8 for large clusters at late times for this shear rate.  In Figure 36(d) we show 
the growth in individual coordination numbers for Pe0 = 0.1.  As in Figure 36(c), at late times, 
the Pe0=0 case shows a large amount of restructuring, with coordination numbers trending 
toward values larger than 6.  
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Figure 36. a) (top left) Coordination number histogram for all particles in diffusive system 
from t=0 to t=30,000τ. b) (top right) same for sheared system at Pe

0
=10−2. c) (bottom left) 

same for sheared system at Pe
0
=10−1 from t=0 to t=21,000τ. Compactification of clusters 

is apparent at late times from shift to larger coordination numbers. d)  (bottom-right) 
Evolution of individual coordination number fractions vs. time for Pe0=0.1 case. 
 
Figure 37 shows two views of the late-time cluster morphologies in the purely kinetic case.  The 
system is isotropic, looking statistically identical from any orientation.  A closeup view of this 
system at late times demonstrates the branched fractal appearance of the flocs formed as a result 
of thermal diffusion.  These structures look qualitatively similar to those observed in many other 
studies of diffusively limited aggregation. In Figure 38, the late-time cluster morphologies of the 
sheared Pe0=0.1 case is shown. We immediately observe the anisotropy of the system.  The 
system appears different, as do the individual clusters, when viewed along the voriticity direction 
as opposed to the shear direction.  This, as mentioned earlier, is a result of hydrodynamic forces 
which tend to align newly formed clusters in Jeffrey’s orbits, so that the rotational axis of the 
clusters is along the vorticity direction.  This axis orientation represents the axis through the 
cluster center for which the cluster has the largest moment of inertia.   
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Figure 37. a) (left) Snapshot of diffusive system Pe

0
=0 at t=30,000τ b) (right) 150x150x150 

d3 section of system showing individual cluster morphologies. 
 

7.4 SUMMARY 
  
We have successfully demonstrated a model of aggregation in adhesive systems experiencing 
diffusion and steady shear.  Under the purely perikinetic case, we find good agreement in the 
morphologies (Df) of structures that are formed, the kinetics of aggregation, and the evolution of 
the cluster size distribution with well established results.  For systems where shear plays a role, 
we have observed additional physical mechanisms which affect these same metrics.  We find 
power law kinetics with exponents that are shear-rate dependent.  We also observe the formation 
of an anisotropic particle field.  Additionally, restructuring is observed to play a large role in 
these semirigid clusters, leading to large fractal dimensions at high shear rates.  Restructuring, as 
seen in the evolution of the particle coordination numbers, is found to be a dynamic process with 
timescales that overlap aggregation timescales.  These mechanisms affect the kinetics and 
resulting size distributions in ways that have not been previously fully explained by sectional 
models.  We believe the anisotropy that develops in the particle field resulting from cluster 
alignment into Jeffreys orbits plays an important role in the growth kinetics and developing size 
distribution. This study is one of, if not the first of its kind to attempt to treat the full physical 
description of aggregation of low concentration adhesive particles in a background fluid, 
including resolving the semirigid adhesive contact between individual particles. 
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Figure 38.  a) (top left) Snapshot of sheared system with Pe

0
=10−1 at t=21,000τ looking 

down on x-y plane. Shear velocities are along x, increasing in y b) (top right) 
150x150x150 d3 section of system showing individual cluster morphologies also in x-y. a) 
(bottom left) Snapshot of same system now looking down at y-z plane b) (bottom right) 
150x150x150 d3 section of system showing individual clusters, looking down at y-z plane. 
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8 CONCLUSIONS 
 
Algae flocculation is a potential means to effectively and efficiently separate algae from its 
growth media.  To do so, the tendency of the algae surface to generate a net anionic charge that 
stabilizes the suspension must be overcome and the algae must be brought in contact with 
sufficient frequency to grow flocs.  This work improves our understanding and develops tools to 
predict both the surface processes and the floc evolution. 
 
To better understand the surface charge, we report measurements of surface functional group 
concentrations and related these to the flocculant requirements.  These functional group 
concentrations are found to vary with the cultivation conditions and with the algae life cycle 
stage; higher surface functional group concentrations are found during exponential growth than 
during stationary phase with even fewer measured during the declining phase.  This suggests that 
cultivation conditions and harvesting time can have a significant impact on the flocculant 
requirements.   
 
We also measure boundaries on the range of effective flocculation that are determined by the 
change in surface state (transition to/from deprotonation of surface groups).  To predict this we 
developed models of the surface charge both as a function of the pH and as a function of the 
ionic content of the growth media.  These models are presented in the context of PHREEQC.  
Because the algae surface also interacts with precipitates, models for precipitate surface states 
are developed for both traditional inorganic flocculants like FeCl3 and for the precipitates that 
form from bulk salts.  Bulk salts are those available in sufficient concentrations in natural saline 
and brackish waters to cause precipitation at high pH and that have been associated with 
autoflocculation of algae.  These models show the favorable autoflocculation conditions as a 
function of the relative ion concentrations, and are in agreement with observed autoflocculation. 
 
When the algae concentration is sufficiently high, alga-alga interactions are frequent enough that 
the collision efficiency can be reduced without a penalty in the harvesting efficiency.  Since high 
collision efficiency is brought about by the addition of flocculants, the flocculant per biomass is 
found to be reduced under high concentrations, a desirable result.  The collision frequency is 
known to be significantly affected by the fractal structure of the flocs and we have sought to 
understand this in a multi-pronged approach.  The focus has been on the observed change in floc 
structure due to shear.  Initial flocs tend to be less dense with shear energy from the flow causing 
flocs to restructure as they grow into denser clusters.  This leads to potentially reduced cross 
sections but at the same time to faster settling velocities and potentially greater water removal.   
 
The floc structure is observed to change as a function of the shear rate in highly controlled 
Couette flow measurements of the shear-driven aggregation.  At the same time, the floc 
distributions are found to reach a self-similar state.  Similar observations are made in particle 
dynamics simulations in the context of LAMMPS.   
 
To study this restructuring in the high-fidelity simulation environment provided by LAMMPS 
we have introduced a set of potentials that provide rolling, twisting and shearing resistance in 
addition to adhesion.  One important result to come out of this is the dependence of the 
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restructuring on random intra-floc motions.  It was realized that the typical computational 
methods to damp out intra-floc vibrations artificially reduce the restructuring that can occur even 
in the absence of shear.  To overcome this we present a new means of thermostating internal 
modes and show that this significantly alters the floc morphology, radius of gyration and internal 
particle coordination number.    
 
Additional LAMMPS simulations carried out with the addition of shear energy show the effect 
of this shear energy on the growth and restructuring process.  Of particular note is the clear 
identification of separate floc structures for early floc growth and for later post-restructured 
flocs.  The early floc growth is characterized by a relatively low fractal dimension.  As the flocs 
grow to a size where the flow shear energy is significant relative to the floc strength, the flocs 
restructure to a higher fractal dimension and simultaneously the average internal particle 
coordination number increases.  Different degrees of restructuring are observed both with time 
and with the magnitude of the shear energy.   
 
Ultimately, the evolution of flocs occurs over much longer time and length scales than can be 
simulated in LAMMPS, and there is a need to provide macroscale models of the floc growth 
process.  This is done using the sectional modeling approach to predicting the evolution of the 
floc size distribution.  We present a general form suitable for use with varying floc structure 
(fractal dimension and prefactor) and varying floc density.  Floc growth predictions varying with 
different fractal dimensions are presented.  Particular attention is paid to the potential 
fragmentation and restructuring dependencies, and these are analyzed to identify the degree of 
restructuring that might be expected at different degrees of shear.    
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9 APPENDIX A: PHREEQC INPUT FILE FOR SEAWATER 
AUTOCOAGULATION  

The PHREEQC input file below calculates pH-dependent speciation of algae surfaces and 
hydroxyapatite, calcite, and Mg(OH)2 surfaces, allowing the potential for autocoagulation to be 
estimated.   
TITLE Autocoagulation simulations.  Patrick V. Brady, Sandia National Labs 
PHASES 
Hydroxylapatite 
        Ca5(OH)(PO4)3 +4.0000 H+  =  + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Ca++ 
        log_k           -3.0746 
Fe(OH)3 
Fe(OH)3 + 3H+ = 3H2O + 1Fe+3 
log_k  4.  
SOLUTION_SPECIES 
H2O + Ca+2  =  CaOH+ + H+ 
log_k -12.85 
delta_h 18.31 kcal 
Mg+2 + H2O = MgOH+ + H+ 
log_k  -11.44 
delta_h 15.952 kcal 
SURFACE_MASTER_SPECIES 
Alg_c Alg_cOOH 
Alg_p Alg_pH 
Alg_n Alg_nH 
Hap_c  Hap_cOH 
Hap_p  Hap_pO3H2 
Bru_m  Bru_mOH 
Cc_c   Cc_cOOOH 
Cc_m   Cc_mOH 
SURFACE_SPECIES 
Alg_cOOH = Alg_cOOH 
log_k 0.0 
Alg_pH = Alg_pH 
log_k 0.0 
Alg_nH = Alg_nH 
log_k 0.0 
Hap_cOH = Hap_cOH 
log_k 0.0 
Hap_pO3H2 = Hap_pO3H2 
log_k 0.0 
Bru_mOH = Bru_mOH 
log_k 0.0 
#Algae amine group 
Alg_nH + H+ = Alg_nH2+ 
log_k 9.9 
#Algae phosphoryl group 
Alg_pH = Alg_p- + H+ 
log_k -7.7 
#Algae carboxylate group 
Alg_cOOH = Alg_cOO- + H+ 
log_k -3.9 
Alg_cOOH + Ca+2 = Alg_cOOCa+ + H+ 
log_k -3.8 
delta_h 1.171 kilojoules 
Alg_cOOH + Mg+2 =  Alg_cOOMg+ + H+ 
log_k   -3.4781 
delta_H -8.42239 kJ/mol  
Alg_cOOH + Fe+3 =  Alg_cOOFe+2 + H+ 
log_k   -1.54 
Alg_cOOH + FeOH+2 =  Alg_cOOFeOH+ + H+ 
log_k   -3.34 
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Alg_pH + Ca+2 = Alg_pCa+ + H+ 
log_k -0.7 
Alg_pH + Mg+2 = Alg_pMg+ + H+ 
log_k -0.6 
# BRUCITE 
Bru_mOH = Bru_mO- + H+ 
log_k -12.0 
Bru_mOH + H+ = Bru_mOH2+ 
log_k 10.0 
# HYDROXYAPATITE 
Hap_cOH + H+ = Hap_cOH2+ 
log_k 8.41 
Hap_pO3H2 = Hap_pO3H- + H+ 
log_k -1.11 
Hap_cOH + HPO4-2 + H+ = Hap_cPO4H- + H2O 
log_k 11.63 
Hap_pO3H2 + Na+ = Hap_pO3Na- + 2H+ 
log_k -11.08 
Hap_pO3H2 + Ca+2 = Hap_pO3HCa+ + H+ 
log_k -0.7 
Hap_pO3H2 + Mg+2 = Hap_pO3HMg+ + H+ 
log_k -0.7 
# CALCITE 
Cc_mOH = Cc_mOH 
log_k 0.0 
Cc_cOOOH = Cc_cOOOH 
log_k 0.0 
Cc_cOOOH = Cc_cOOO- + H+ 
log_k -5.1 
delta_H -2.8 kilojoules 
Cc_cOOOH + Ca+2 = Cc_cOOOCa+ + H+ 
log_k -2.6 
delta_H 7.4 kilojoules 
Cc_cOOOH + Mg+2 = Cc_cOOOMg+ + H+ 
log_k -2.6 
delta_H 8.0 kilojoules 
Cc_mOH + H+ = Cc_mOH2+ 
log_k 11.85 
delta_h -60.7 kilojoules 
Cc_mOH + CO3-2 + H+ = Cc_mCO3- + H2O 
log_k  17.1 
delta_h -46.7 kilojoules 
Cc_mOH2+ + SO4-2 = Cc_mSO4- + H2O 
log_K 2.1 
delta_H 11.6 kilojoules 
Cc_mOH2+ + HPO4-2 = Cc_mHPO4- + H2O 
log_K 2.7 
Cc_mOH2+ + HPO4-2 = Cc_mPO4-2 + H+ + H2O 
log_K -5.3 
SOLUTION 1 
# Seawater 
-units mmol/kgw 
-temp 25 
pH 5.0 
Ca 10. 
P 0.02 
Fe(3) 0.0001 
K 10 
Mg 52 
C(4) 2. 
S(6) 28. 
Na 469.   charge 
Cl 546. 
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PHASES 
Fix_H+ 
H+ = H+ 
log_k 0.0 
KNOBS 
-iterations 150 
-convergence_tolerance 1e-12 
-tolerance 1e-14 
-step_size 10. 
-pe_step_size 5. 
-diagonal_scale TRUE 
SURFACE 1 
Alg_cOOH 0.002 10.  20. 
Alg_pH 0.0008 
Alg_nH 0.0014 
Hap_cOH Hydroxylapatite equilibrium_phase 0.072 1e4 
Hap_pO2H2 Hydroxylapatite equilibrium_phase 0.05 1e4 
Bru_mOH Brucite equilibrium_phase 0.167 1e4 
Cc_cOOOH Calcite equilibrium_phase 0.041 1e4 
Cc_mOH Calcite equilibrium_phase 0.041 1e4 
USE solution 1 
USE surface 1 
EQUILIBRIUM_PHASES 1 
Fix_H+ -6.0 HCl 10.0 
Calcite 0.0 0.0 
Brucite 0.0 0.0 
Hydroxylapatite 0.0 0.0 
Fe(OH)3 0.0 0.0 
END 
USE solution 1 
USE surface 1 
EQUILIBRIUM_PHASES 1 
Fix_H+ -8.0 NaOH 10.0 
Calcite 0.0 0.0 
Brucite 0.0 0.0 
Hydroxylapatite 0.0 0.0 
Fe(OH)3 0.0 0.0 
END 
USE solution 1 
USE surface 1 
EQUILIBRIUM_PHASES 1 
Fix_H+ -10.0 NaOH 10.0 
Calcite 0.0 0.0 
Brucite 0.0 0.0 
Hydroxylapatite 0.0 0.0 
Fe(OH)3 0.0 0.0 
END 
USE solution 1 
USE surface 1 
EQUILIBRIUM_PHASES 1 
Fix_H+ -12. NaOH 10.0 
Calcite 0.0 0.0 
Brucite 0.0 0.0 
Hydroxylapatite 0.0 0.0 
Fe(OH)3 0.0 0.0 
END 
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10 APPENDIX B: FRACTAL FLOCS 
Flocs tend to form more dispersed shapes than a dense sphere, so that a floc of i particles may be 
larger than a dense sphere of that many particles.  A characteristic dimension of such a floc, rf, is 
given by  
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where v0 is the volume of a primary particle, a single cell, D is the fractal dimension and b is a 
prefactor.  More typically the definition of the mass fractal dimension is given in terms of the 
radius of the primary particle, a0,   
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This expression shows how the number of primary particles in a floc is related to the floc 
(fractal) radius and the fractal dimension and the prefactor. 
 
The volume of particles in a floc is proportional to i  
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while the volume that the floc encompasses (including the pore-filling fluid) is proportional to 
i3/D  
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so that the volume fraction of particles within the floc is  
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With fractal dimensions of 1.0, 1.5, 2.0, 2.5 and 3.0, we get volume fractions proportional to the 
number of particles in the floc as follows.  The effective density, given below, also scales with 
the particle size. 

D f 
3D

e fr  


( 10 )e f cr r 
1.0 2

f i  2 2
e fr i      0.01 c w 

1.5 1
f i  1.5 1

e fr i      0.03 c w 

2.0 1/ 2
f i  1 1/2

e fr i      0.1 c w 

2.5 1/5
f i  0.5 0.2

e fr i      0.3 c w 

3.0 1f  0 0
e fr i    1 c w 

The effective buoyancy of a floc can be interpreted using the volume fraction of the particle 
phase times the particle phase density,  

  ,     =e c e c w         (79) 
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where e is the effective density, c is the cell density, w is the water density.  When settling 
velocity is used to compute the effective density, one gets a correlation between e and the 
apparent dimension, rf. like  

 3D
e fr    (80) 

showing how the fractal dimension might be determined from this settling data.  There is then a 
substantial reduction in the settling velocity for large fractal particles as can be computed from 
the above table.   
 
We can also estimate an effective area of connectedness within the floc.  This is obtained in a 
manner directly analogous to the floc volume fraction by defining an area of particles in a floc 
cross section as  
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while the area of the floc is proportional to i2/D  

 
2/

2 2
0floc area

D

g

i
r a

b
      

 
 (82) 

so that the area fraction of particles within the floc is  
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11 APPENDIX C: CAPABILITIES ADDED TO LAMMPS DISCRETE 
ELEMENT MODELING PACKAGE 

 
11.1 JKR-TYPE ADHESIVE GRANULAR POTENTIAL:  
This capability allows for resolution of all modes of relative motion of pairs of adhesively bound 
particles (normal, rolling, shearing, twisting) as well as critical contact force and dissipation in 
those modes.  The full scope of this potential is described in the included modeling summary. 
This capability is applicable to any system of adhesive particles from algae cells to soot and 
other aerosols or suspended particulate matter.  We have already started pursuing funding in 
some of these other application spaces based on this new capability. 
 
11.2 GRANULAR THERMOSTATING:  
We enhanced our model of granular materials by developing a thermostating mechanism 
whereby dissipative force fields acting on pairs of particles receive stochastic thermal 
fluctuations.  This ensures that fluctuation-dissipation holds on the system of particles and 
temperatures are consistent throughout the simulation domain.  To our knowledge, this is the first 
such consistent treatment of temperature for dissipative binary granular force fields.   
 
11.3 TAYLOR-COUETTE FLOW FIELD: 
Two distinct methods of modeling Taylor-Couette flow fields (pre-turbulent) were added to the 
LAMMPS code base.  The first allows the user to specify a shear gradient and vortex intensity.  
This case is used in a simulation with periodic boundaries, thus no Taylor number is specified.  
The second method allows for a full 3D description of a Taylor cell wherein the Taylor number 
is specified and the vortex intensity is a consequence of the material parameters of the 
simulation.     
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