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Abstract

Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced 

atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several 

agonists, among which is the glucocorticoid-regulated protein called annexin A1. The 

proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide 

receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino 
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Fig. S1. Engineered NPs with Col IV targeting peptide.
Fig. S2. Metabolic parameters of the mice were unaffected by treatment with Col IV–Ac2-26 NPs or controls.
Fig. S3. Col IV–Ac2-26 NP treatment does not affect collagen content, superoxide, or mRNA of Il10 or Acta2 in the liver or spleen.
Fig. S4. Col IV–Ac2-26 NP treatment does not affect aortic root lesion area or the numbers of lesional macrophages and SMCs.
Fig. S5. Ac2-26 decreases 7KC-induced ROS in an FPR2/ALX- and Nox2-dependent manner.
Fig. S6. Lesion FPR2/ALX decreases as atherosclerosis progresses.
Fig. S7. Metabolic parameters of the bone marrow transplant mice described in Fig. 4.
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acids 2–26 (Ac2-26). Collagen IV (Col IV)–targeted nanoparticles (NPs) containing Ac2-26 were 

evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr−/− mice. 

When administered to mice with preexisting lesions, Col IV–Ac2-26 NPs were targeted to lesions 

and led to a marked improvement in key advanced plaque properties, including an increase in the 

protective collagen layer overlying lesions (which was associated with a decrease in lesional 

collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice 

lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a 

resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize 

advanced atherosclerotic lesions. These findings support the concept that defective inflammation 

resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.

INTRODUCTION

Atherosclerosis, the disease process responsible for the leading cause of death in the 

industrialized world, is driven by a chronic, maladaptive inflammatory response (1). This 

response is triggered by the persistent and amplified subendothelial retention of 

apolipoprotein B–containing lipoproteins in focal areas of the arterial tree (2). The normal 

inflammatory response is followed by a resolution phase, which is effected by specific lipid 

and protein mediators that terminate inflammation and promote tissue repair (3, 4). In this 

regard, many of the characteristics of clinically dangerous advanced plaques, including 

thinning of a protective “cap” of subendothelial collagen, oxidative stress, defective 

clearance of dead cells (efferocytosis), and tissue-damaging necrosis, suggest that this 

resolution process is defective in these lesions (5, 6). However, more proof in vivo is needed 

to support this concept. In addition, cell-specific resolution processes that fail in advanced 

atherosclerosis need to be identified, and the therapeutic potential of enhancing resolution in 

this disease remains to be explored.

The therapeutic potential of enhancing resolution in a chronic disease like atherosclerosis 

could be substantial in that mediators of resolution, unlike anti-inflammatory drugs per se, 

have a much greater potential to suppress inflammation and promote tissue repair without 

compromising host defense (7, 8).

Although atherosclerosis can be treated with low-density lipoprotein (LDL) lowering by 

statins, cardiovascular disease remains the leading cause of death worldwide (9). In view of 

the evidence for defective inflammation resolution in atherosclerosis (5, 6), proresolving 

therapy may be able to expand treatment options for cardiovascular disease. To date, mouse 

studies have shown the benefit of adenoviral interleukin-10 (IL-10) treatment (10), but 

systemic delivery of IL-10 would require frequent dosing at a high dose, which is expensive, 

inconvenient, and potentially dangerous, especially for a chronic condition like 

atherosclerosis. For example, adverse effects of high-dose systemic recombinant IL-10 

therapy in Crohn’s disease patients include thrombocytopenia; anemia; proliferation of B 

cells, CD8+ cytotoxic T cells, natural killer cells, and mast cells; and elevated interferon-γ 

(11, 12). Moreover, systemic IL-10 can also compromise host defense, which can be 

avoided by tissue-specific transgenesis in mice (13).
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One class of resolution mediators consists of fatty acid–derived lipids called lipoxins, 

resolvins, protectins, and maresins, which are collectively referred to as specialized 

proresolving lipid mediators (3). Several of these mediators, notably RvE1, have shown 

benefit in preclinical models of certain chronic inflammatory diseases, including asthma, 

rheumatoid arthritis, and periodontal disease (14, 15). In humans, proresolving lipid 

mediators have shown benefit in dry eye syndrome, a chronic inflammatory disease 

affecting the ocular surface (www.clinicaltrials.gov; NCT00941018). Another class of 

proresolving mediators includes proteins such as transforming growth factor–β (TGF-β) and 

annexin A1 (4). Endogenous annexin A1, a 37-kD protein, mediates inflammation resolution 

in several disease models, and administration of a 25–amino acid peptide encompassing its 

pharmacophore N-terminal region, called Ac2-26, can mimic the effects of annexin A1 (16). 

Annexin A1 and Ac2-26 bind and activate a specific G protein–coupled receptor (GPCR) 

called N-formyl peptide receptor 2 (FPR2/ALX) to evoke their protective actions, and 

intriguingly, this is the same receptor used by two lipid mediators: resolvin D1 (RvD1) and 

lipoxin A4 (LXA4) (17–20).

We chose the proresolving mediator Ac2-26 because it is a small, stable peptide and can be 

targeted to atherosclerotic lesions using nanotechnology. Ac2-26 is rapidly cleared from 

plasma, and so repeated administrations of large amounts of peptide are needed for efficacy 

(21). Although this strategy may be acceptable for the treatment of acute inflammatory 

conditions, it would be difficult to use in chronic diseases such as atherosclerosis. In an 

attempt to overcome this problem, we recently encapsulated Ac2-26 in controlled release 

polymeric nanoparticles (NPs) that are targeted to sites of injury through the addition of a 

collagen IV (Col IV)–binding peptide (22). As initial proof of concept, we showed that these 

Col IV–Ac2-26 NPs accumulated in areas of acute inflammation and tissue injury and 

enhanced resolution to a much greater extent than free Ac2-26 peptide. However, these 

acute settings are very different from chronic, nonresolving inflammatory conditions 

because of the central role of failed resolution in the chronic conditions and the need for 

prolonged therapy.

In this context, we now report our findings on the application of this strategy to advanced 

atherosclerosis. Because Col IV is a major component of the vascular basement membrane 

that becomes exposed at sites of vascular injury and inflammation (23, 24), we reasoned that 

Col IV exposure at sites of atherosclerosis would facilitate lesional targeting of the NPs. In 

mice, we show that Col IV–Ac2-26 NPs home to atherosclerotic lesions and stabilize 

vulnerable plaques by reducing lesional superoxide and collagenase activity in a myeloid-

FPR2/ALX–dependent manner. These findings are consistent with the concept that 

inflammation resolution is defective in advanced atherosclerosis. Further, these findings 

suggest a new modality to combat inflammation in atherosclerosis in a way that is predicted 

to compromise the host defense system less than directly targeting inflammatory mediators 

or their receptors.
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RESULTS

Col IV-Ac2-26 NPs home to experimental atherosclerotic lesions

The design of the Col IV–Ac2-26 NPs used in this study was based on four principles (22): 

(i) long circulating half-life to facilitate localization and plaque accumulation; (ii) small size 

to facilitate permeation of the endothelium, that is, NPs that are ~100 nm or smaller can 

access the vascular wall by enhanced permeability and retention; (iii) molecular targeting to 

enhance retention in the plaque; and (iv) controlled, extracellular cargo release to enable the 

drug to activate its cell surface receptor target at an optimal concentration and for a maximal 

duration. The NPs were composed of PLGA and PEG, and were conjugated to Ac2-26 

peptide (fig. S1). Both the Ac2-26 NPs and control NPs with scrambled peptide were 

formulated using nanoprecipitation such that the diameter was <100 nm and the surface 

charge was <−30 mV (fig. S1, A and D), as described previously (22). The surface of the 

NPs was decorated with a Col IV–binding heptapeptide, which we identified previously 

from a phage display library (23). Control therapy was Ac2-26 NPs that lacked the Col IV–

binding peptide.

To test targeting of atherosclerotic lesions, Ldlr−/− mice were fed the Western diet for 12 

weeks to promote atherosclerosis and then injected intravenously with Ac2-26 NPs or Col 

IV–Ac2-26 NPs conjugated with Alexa 647. Because the NPs were designed to release 

>95% of the Ac2-26 over 5 days, we chose to harvest the aortic roots, spleens, and livers 5 

days after NP infusion. We found that Alexa 647 fluorescence in the aortic root was twofold 

greater for Col IV–Ac2-26 NPs than for the Ac2-26 NPs, particularly in the subendothelial 

region (Fig. 1, A and B). About 70% of the Col IV–Ac2-26 NPs were present in the 

atherosclerotic lesions relative to spleen and liver, whereas the opposite relative distribution 

was found for the non–Col IV NPs (Fig. 1B). Thus, Col IV–Ac2-26 NPs bind more 

selectively to atherosclerotic lesions than do nontargeted Ac2-26 NPs.

Col IV–Ac2-26 NPs increase subendothelial collagen in mice with established 
atherosclerosis

To test the efficacy of Col IV–Ac2-26 NPs in advanced atherosclerosis, Ldlr−/− mice were 

fed a Western diet for 12 weeks, after which Col IV–Ac2-26 NPs, free Ac2-26, control Col 

IV–scrambled peptide NPs, and vehicle control (normal saline) were injected intravenously 

once per week over a 5-week period. Body weights, plasma cholesterol, lipoprotein profiles, 

and fasting blood glucose were similar between the four groups of mice (fig. S2). Aortic root 

and brachiocephalic (BCA) lesions were harvested, and their cross sections were analyzed 

for several hallmarks of advanced plaque progression that are associated with vulnerable 

plaques in humans (25). One such hallmark is thinning of a protective layer, or cap, of 

subendothelial collagen that overlies the necrotic center of advanced lesions.

As expected for Ldlr−/− mice fed the Western diet for 17 weeks, the aortic root lesions of the 

control cohort had relatively thin layers of subendothelial collagen (Fig. 2A). In contrast, 

this collagen layer was significantly thicker in the Col IV–Ac2-26 NP–treated group 

compared with the other groups, and comparison of 12 weeks (before treatment) versus 17 

weeks indicated that this effect of the Col IV–Ac2-26 NPs was associated with an increase 
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in cap thickness during the 5-week treatment period. In the spleen and liver, the amount of 

collagen and the expression of the fibrosis marker α-actin were unaffected by Col IV–

Ac2-26 NPs (fig. S3), suggesting that the increase in collagen in the aortic root was a 

targeted process and not associated with potentially adverse fibrosis in other tissues. Overall 

lesion area and the numbers of lesional macrophages and smooth muscle cells (SMCs) were 

similar among all treatment groups (fig. S4, A to C), consistent with a primary effect of the 

Col IV–Ac2-26 NPs on the critical plaque parameter of lesion remodeling.

One likely cause of fibrous cap thinning is increased activity of collagen-degrading 

metalloproteinases, which are secreted by inflammatory macrophages (26, 27). Therefore, 

we tested whether the increase in fibrous cap thickness in the aortic root lesions of Col IV–

Ac2-26 NP–treated mice was associated with a decrease in lesional collagenase activity. 

Using lesional cross sections incubated with a fluorescently labeled substrate that increases 

in fluorescence upon hydrolysis, we found that collagenase activity was significantly lower 

in the lesions of Col IV–Ac2-26 NP–treated mice (Fig. 2B). Another possible mechanism 

for increased fibrous cap thickness could be enhanced collagen biosynthesis. Consistent with 

this possibility was the finding that the lesions of Col IV–Ac2-26 NP–treated mice had 

significantly enhanced Col3a1 mRNA (Fig. 2C). These combined data are consistent with 

the idea that Col IV–Ac2-26 NPs increase fibrous cap thickness by a combination of 

decreasing cap degradation and increasing cap synthesis.

Col IV–Ac2-26 NPs suppress superoxide and increase IL-10 in atherosclerotic lesions

Hydrogen peroxide and other reactive oxygen intermediates (ROIs) are generated during the 

acute inflammatory response to kill pathogens, but excessive ROIs can damage host tissues. 

Hence, a key function of the resolution response is to terminate the production of ROIs (28). 

One of the signs of defective inflammation resolution in advanced atherosclerosis is 

excessive oxidative stress (29, 30). Using aortic root sections incubated with 

dihydroethidium (DHE), a fluorescent probe that detects superoxide in tissues, we observed 

that lesions of Col IV–Ac2-26 NP–treated mice had significantly less superoxide than those 

of the other control groups (Fig. 3A). Superoxide was not decreased in the spleen and liver 

of Col IV–Ac2-26 NP–treated mice, further suggesting a tissue-specific action of these NPs 

at the aortic root (fig. S3).

To further probe the mechanism of the decrease in superoxide by Ac2-26, we studied 

primary macrophages incubated with an oxysterol found in atherosclerotic lesions, 7-

ketocholesterol (7KC), which is known to induce Nox2-dependent oxidative stress in 

macrophages (31). Consistent with the in vivo lesional data, Ac2-26 significantly blocked 

7KC-induced reactive oxygen species (ROS) in a FPR2/ALX-dependent manner (fig. S5A). 

A parallel set of experiments revealed that 7KC-induced ROS was markedly decreased in 

macrophages from Nox2−/− mice, and Ac2-26 did not further lower ROS in these mutant 

macrophages (fig. S5B). Although these data are difficult to interpret given the very low 

level of ROS in the Nox2−/− macrophages treated with 7KC alone, it is possible that part of 

the mechanism of Ac2-26–mediated reduction in ROS is through suppression of 7KC-

induced Nox2 activation.
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Another source of ROS in atherosclerotic lesional macrophages is mitochondrial oxidative 

stress (mitoOS), which promotes plaque development by enhancing inflammation in lesions 

(30). We therefore investigated whether Col IV–Ac2-26 NPs temper mitoOS in lesions. 

MitoOS causes oxidative damage to mitochondrial DNA and thus can be assayed by 

measuring a marker of this process—mitochondrial (non-nuclear) 8-hydroxydeoxyguanosine 

(8-OHdG); this assay also measures nuclear 8-OHdG, which reflects more global 

intracellular oxidative stress (30). Col IV–Ac2-26 NPs significantly decreased both nuclear 

and nonnuclear 8-OHdG staining in lesional macrophages (Fig. 3, B and C), suggesting that 

the treatment tempered both general oxidative stress and mitoOS in lesional macrophages.

An important hallmark of inflammation resolution is increased production of proresolving 

mediators (32). We therefore assayed expression of the mRNA for the proresolving cytokine 

IL-10 and found that it was elevated in the lesions of Col IV–Ac2-26 NP–treated mice (Fig. 

3D). Il10 mRNA was not significantly increased in the spleen or liver of the Col IV–Ac2-26 

NP–treated mice, again suggesting a tissue-targeted action of these NPs (fig. S3).

Col IV–Ac2-26 NPs exert atheroprotective effects in myeloid-derived cells in an FPR2/ALX-
dependent manner

FPR2/ALX, the cell surface receptor for the proresolving ligands annexin A1, Ac2-26, 

LXA4, and RvD1, was present on ~30% of murine Mac3+ macrophages and on ~40% of 

Mac3− cells at 8 and 12 weeks after starting a Western diet (fig. S6). The percentage of 

FPR2/ALX+Mac3+ and FPR2/ALX+Mac3− cells significantly decreased after 17 weeks of 

Western diet, raising the possibility that a decrease in the level of macrophage FPR2/ALX 

contributes to defective inflammation in advanced atherosclerosis.

We determined whether the proresolving effects of Col IV–Ac2-26 NPs on atherosclerotic 

lesions were linked to the known mechanistic basis of Ac2-26 action, that is, binding to and 

activation of the FPR2/ALX receptor on myeloid-derived cells. Irradiated Ldlr−/− mice were 

transplanted with bone marrow cells from wild-type (WT) or from Fpr2−/− mice and then 

subjected to the NP treatment protocol and lesional analyses as in the previous studies. As 

with the non-transplant model, lesion area and systemic metabolic parameters were similar 

among the four groups of mice (figs. S4D and S7). In the WT-transplanted mice 

(WT→WT), Col IV–Ac2-26 NPs enhanced fibrous cap thickness (Fig. 4A), similar to what 

was found in the non–BMT (bone marrow transplant) model. However, this response was 

blunted in Fpr2−/−-transplanted WT mice (Fpr2−/−→WT). The trend toward increased cap 

thickness in the Fpr2−/−→WT Ac2-26-NP group may reflect a modest, direct action of 

Ac2-26 on non–bone marrow–derived intimal SMCs, which are known to be a source of 

collagen in lesions, but this alternate mechanism was not investigated here.

Treatment with Col IV–Ac2-26 NPs also significantly reduced collagenase activity and 

lesional superoxide in the lesions of WT→WT mice, but not in the lesions of the 

Fpr2−/−→WT mice (Fig. 4, B and C). Together, these data indicate that the protective 

actions of Col IV–Ac2-26 NPs were due primarily to activation of their FPR2/ALX receptor 

on myeloid-derived cells.
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Col IV–Ac2-26 NPs decrease lesion area, necrotic area, and oxidative stress in 
brachiocephalic arterial plaques

In mouse models of atherosclerosis, the brachiocephalic artery (BCA) tends to develop 

advanced necrotic plaques, perhaps consequent to the effects of disturbed blood flow on 

lesional endothelium (33). Inspection of the intact BCA, where atherosclerotic lesions 

appear white, as well as quantitative analysis of lesion cross sections revealed that Col IV–

Ac2-26 NPs decreased lesion area and especially necrotic area, where the suppression was 

about 80% (Fig. 5, A to D). Indeed, the decrease in lesion area measurement in the BCA can 

be explained mostly by the marked decrease in necrotic area, because in these lesions, the 

necrotic area represents a substantial portion (~40%) of the total lesion area. We also 

quantified lesional intercellular adhesion molecule-1 (ICAM) immunostaining, a marker of 

inflamed vasculature, and found a substantial decrease in the cohort treated with Col IV–

Ac2-26 NPs compared with animals treated with the scrambled control peptide (Fig. 5E). 

Finally, as with the aortic root, lesional DHE staining was markedly less in the BCA of Col 

IV–Ac2-26 NP–treated mice (Fig. 5F).

DISCUSSION

The goal of this study was to therapeutically target defective inflammation resolution in 

advanced atherosclerotic plaques and thereby suppress plaque progression. To this end, we 

administered a mediator of inflammation resolution, Ac2-26, in an NP form, specifically 

targeting Col IV in atherosclerotic plaques. We demonstrated thickening of the plaque 

fibrous cap, suppression of lesional superoxide, and, in BCA lesions, a decrease in plaque 

necrosis. Each of these improvements is consistent with improved resolution of 

inflammation.

Previous studies have used various genetic manipulations to overexpress a proresolving 

cytokine, IL-10, in mouse models of atherosclerosis. In one such study, Ldlr−/− mice were 

transplanted with the bone marrow of IL-10 transgenic mice, and aortic root plaque 

complexity was decreased in these chimeric mice compared with lesions of control 

WT→Ldlr−/− mice (34). Despite these promising findings, whole-organism genetic 

manipulation is not a therapeutic option for humans, and the use of cytokines for 

atherosclerosis would need to be adapted to a therapeutic approach. The Col IV–Ac2-26 

NPs in this study led to an increase in Il10 mRNA in lesions, suggesting that its benefits 

may, in part, be mediated by IL-10. Ac2-26 targets the receptor FPR2/ALX, and a key 

attribute of such ligands is that they dampen excessive inflammation without compromising 

host defense (3). This is critical because therapies that target inflammatory cytokines often 

compromise host defense against pathogens, particularly when they are administered over a 

long period of time (8). Thus, therapeutics that enhance resolution might have a better 

benefit/risk ratio than currently available anti-inflammatory drugs, such as anti–TNFα 

(tumor necrosis factor-α) (8).

A key set of questions that emerges from this study is related to the molecular and cellular 

mechanisms that underlie the protective effects of Ac2-26 and FPR2/ALX signaling. For 

example, the increase in fibrous cap thickness was associated with a decrease in lesional 

collagenase activity and an increase in Col3a1 expression, but the mechanism and 
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importance of these processes in fibrous cap remodeling remain to be elucidated. Regarding 

collagen synthesis, annexin A1 can act directly on SMCs (35). However, the results of the 

Fpr2−/− BMT study raise the possibility that Ac2-26 enhances the production of collagen by 

lesional SMCs by first inducing macrophages to secrete TGF-β, which is a profibrotic 

mediator that can promote plaque stabilization (36). Another question is how the 

intralesional location of collagen accrual is regulated by proresolving mediators. Although 

collagen near the lumen in advanced plaques is beneficial to prevent rupture, collagen 

accrual in other parts of the lesions may promote detrimental vascular stiffness (37). Other 

examples of mechanistic questions for future investigation include how Ac2-26 quenches 

oxidative stress and how it suppresses plaque necrosis (38–40). Finally, another FPR2/ALX 

ligand, RvD1, can decrease the ratio of leukotriene to lipoxin in leukocytes in acute 

peritonitis (41, 42); if this process occurs in lesional macrophages, it could provide a 

mechanism for decreased influx of inflammatory leukocytes, because leukotriene B4 (LTB4) 

has chemoattractant activity. Moreover, if lesional LXA4 levels were increased by Col IV–

Ac2-26 NPs, this may amplify the Ac2-26 effect, because LXA4 activates the FPR2/ALX 

receptor and stimulates annexin A1 mobilization from neutrophils (31).

This study raises the question as to why resolution becomes defective as lesions progress. 

There is evidence that endogenous resolution pathways are operational in earlier lesions, 

notably those activated by IL-10 and 12/15-lipoxygenase (LOX)–derived specialized 

proresolving lipid mediators, such as LXA4 and RvD1 (5, 43, 44). Possible explanations for 

why these and other pathways fail in advanced lesions include defective mediator 

production, enhanced mediator catabolism, conversion to inactive or proinflammatory 

compounds, and/or defective resolution receptor signaling. High-fat diet may also suppress 

the synthesis of proresolving mediators by 12/15-LOX (43). Furthermore, various 

specialized proresolving lipid mediators are converted into inactive forms through 

enzymatic metabolism (45, 46). Because FPR2/ALX receptor expression decreases as 

atherosclerosis advances, there is a possibility that therapeutics that target this receptor, such 

as Col IV–Ac2-26 NPs, are less effective when lesions reach this very advanced stage. 

However, the therapeutic effects of Col IV–Ac2-26 NPs in mice with advanced 

atherosclerosis shown here suggest that the residual receptor level is sufficient to mediate 

beneficial effects, at least when the ligand is presented in a high enough concentration. In 

contrast, the diminished FPR2/ALX expression during advanced atherosclerosis may not be 

sufficient for endogenous ligands to mount proresolving pathways, which may be an 

underlying mechanism contributing to defective resolution in advanced atherosclerosis.

Most atherosclerotic lesions do not progress and do not cause acute coronary syndromes, but 

those that do progress are responsible for the leading cause of death in the industrialized 

world: cardiovascular disease. Clinically important, unstable plaques in humans are not 

necessarily larger, but do have distinct morphological features that promote plaque rupture: 

larger necrotic cores, thinner fibrous caps, higher oxidative stress, and inflammation (25). 

Therefore, a critical goal in this area of research is to identify specific molecular-cellular 

mechanisms that lead to these plaque features and then, with this knowledge, devise 

strategies to therapeutically inhibit these processes in an effective and safe manner. 

Although the initial inflammatory response itself is an important process in plaque 
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progression, directly inhibiting this response in a chronic setting, for example, through anti-

cytokine therapy, runs the danger of compromising host defense. On the other hand, 

defective inflammation resolution accurately defines vulnerable plaque characteristics, and it 

is amenable to a therapeutic approach—targeted administration of resolution mediators—

that is predicted not to compromise host defense (7, 8, 16).

The experiments herein used one animal model of advanced atherosclerosis and tested a 

proof-of-concept targeted NP with one type of proresolving mediator. To bring targeted 

resolution mediator nanotherapeutics to the clinic for patients at high risk for 

atherothrombotic vascular events, additional confirmatory studies will be needed, including 

evaluation in more predictive models, such as fat-fed pigs and non-human primates. It is 

plausible that the properties of the NPs including the active proresolving agent will need to 

be optimized for suitable clinical applications (47). Although Ac2-26 has provided a useful 

proof-of-principle approach, other types of resolution mediators, including variations on the 

Ac2-26 peptide itself, may be more potent in promoting plaque resolution. Finally, detailed 

toxicity studies will be needed to show the safety of both the NP material and the resolution 

mediator cargo. With these future goals in mind, it is encouraging to note that NP 

therapeutics are now in clinical use or under clinical investigation for a myriad of other 

conditions including cancers (48), vaccines (49), and imaging (50). Thus, our 

atheroprotective strategy that capitalizes on plaque targeting to deliver a proresolving 

mediator may hold promise to decreasing the incidence of acute coronary events in subjects 

at high risk for atherothrombotic disease.

MATERIALS AND METHODS

Study design

The aim of this study was to test the therapeutic efficacy of targeted NPs containing the 

proresolving peptide Ac2-26 in experimental atherosclerosis. Animal experiments were 

conducted in Ldlr−/− mice using protocols approved by the Columbia University Standing 

Committee on Animals. The treatment groups included vehicle control, free Ac2-26 peptide, 

NPs containing a scrambled Ac2-26 peptide, and NPs containing Ac2-26 peptide. Unless 

otherwise indicated, 8 to 10 animals per group were investigated and were randomly 

assigned to the study groups. The experimentalists were blinded to the identity of the study 

groups while assaying the multiple endpoints in this study.

Synthesis and NP formulation

Copolymers of poly[lactic-co-glycolic acid-b-poly(ethylene glycol)] (PLGA-PEG), with or 

without Col IV–binding peptide or Alexa 647–cadaverine, were synthesized according to 

previously published methods (22) (fig. S1D). Briefly, the C terminus of 50:50 PLGA 

(Lactel, 43.4 kD) and the functional amino group of NH2-PEG (Laysan Bio Inc., 3400 

daltons) were coupled using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride(EDC)and N-hydroxysuccinimide(NHS)(Sigma-Aldrich). Activated PLGA-

NHS was coupled to the heterobifunctional maleimide-PEG-hydroxy to yield PLGA-PEG–

Mal. The Col IV peptide–conjugated targeting polymer was then synthesized by conjugating 

KLWVLPK peptide to PLGA-PEG–Mal via the free thiol of the C-terminal GGGC linker 
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using maleimide chemistry. The product was purified and washed by precipitation in cold 

methanol. A fluorescent polymer was also synthesized by coupling carboxy-terminated 

PLGA to Alexa 647–cadaverine.

The polymer (3 mg) was mixed with 120 μg of Ac2-26 

(AMVSEFLKQAWFIENEEQEYVQTVK) (Tocris Bioscience) or scrambled control 

peptide (WLKQKFQESVEQIAYVMENATEFEV) (Mimotopes) and dissolved in 

acetonitrile. This solution was then added dropwise to 10 ml of nuclease-free water, stirred 

for 2 hours, and then passed through a sterile 0.45-μm syringe filter. The NPs were then 

centrifuged at 3000g for 20 min using an Amicon Ultra-15 centrifugal filter units (molecular 

weight cutoff, 100 kD; Sigma-Aldrich), washed with deionized water, resuspended in 1 ml 

of nuclease-free H2O, and then diluted with sterile saline before injection. The final 

composition of the fluorescently labeled Col IV–Ac2-26 NPs was 87% PLGA-PEG–COOH, 

5% PLGA-PEG–Col IV peptide, 4% PLGA–Alexa 647, and 4% Ac2-26 (w/w).

Animals and diets

Male Ldlr−/− mice, 8 to 10 weeks old, were purchased from The Jackson Laboratory and 

placed on a Western-type diet (TD.88137, Harlan Teklad) for 12 weeks. After 12 weeks, the 

mice were continued on the Western diet for an additional 5 weeks and injected 

intravenously once per week during this period with 200 μl of the following: Col IV–Ac2-26 

NPs or Col IV–scrambled peptide NPs (10 μg of peptide per injection and an equivalent 

polymer amount), free Ac2-26 (10 μg per injection), or sterile saline (vehicle control). All 

procedures were conducted in accordance with protocols approved by the Columbia 

University Standing Committee on Animals guidelines for animal care.

Atherosclerotic lesion analysis

For morphometric lesion analysis, sections were stained with Harris’ H&E. Total lesion and 

necrotic areas were quantified as described previously (30). For plaque necrosis, boundary 

lines were drawn around regions that were free of H&E staining, and area measurements 

were obtained using image analysis software. Collagen staining was performed using 

picrosirius red as per the manufacturer’s instructions (Polysciences Inc.). Because fibrous 

cap thickness can vary throughout the lesions, these values were assessed by averaging the 

thickness in micrometers of the cap in three separate regions of the lesions (that is, one 

measurement for each of the shoulder regions and one measurement in the middle of the 

lesion) and then expressing as AU of cap thickness/lesion area. Collagenase activity in 

lesions was assayed using the DQ Collagenase Assay Kit from Life Technologies according 

to the manufacturer’s instructions. Collagenase was analyzed by calculating MFI per lesion 

using ImageJ software.

For detection of superoxide, the frozen lesion sections were incubated with 1 μM DHE for 

20 min at 37°C and then washed twice with phosphate-buffered saline (29). Sections were 

counterstained with DAPI and mounted with antifade reagent (ProLong Gold). For both 

collagenase and DHE procedures, images were taken on a Zeiss fluorescence microscope 

and analyzed using ImageJ software. For mitoOS measurements, frozen sections were 

stained sequentially at 4°C with anti-Mac3 (1:200; BD clone M3/84) and then anti–8-OHdG 
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(1:200; AB5830; EMD Millipore). Sections were then counterstained with DAPI to identify 

nuclei. Data were quantified as the percentage of total Mac3+ cells that had 8-OHdG 

staining that did not overlap with DAPI, indicating nonnuclear 8-OHdG+ macrophages (30).

For FPR2/ALX expression, aortic root lesions were stained sequentially at 4°C with anti-

Mac3 and then anti-FPR2 antibody (1:200, sc-66901; Santa Cruz Biotechnology). Sections 

were then counterstained with DAPI to identify nuclei. Data were quantified as the 

percentage of ALX+Mac3+ per total Mac3+ cells or the percentage of ALX+Mac3− cells per 

total Mac3− cells.

LCM, RNA amplification, and RT-qPCR

Aortic root sections were subjected to laser capture using a PALM LCM machine as 

described previously (51). RNA was isolated using the RNeasy Micro Kit (Qiagen) and 

linearly amplified using the MessageAmp II aRNA Kit (Ambion). The purity of the RNA 

was estimated by measuring absorbance at 260 and 280 nm using a NanoDrop (Thermo 

Scientific), and RNA with an A260/280 of >1.8 was used for complementary DNA (cDNA) 

synthesis. cDNA was synthesized using the SuperScript VILO cDNA Synthesis Kit 

(Invitrogen), and qPCR was conducted using a 7500 Real-Time PCR system (Applied 

Biosystems) and SYBR Green chemistry. The following specific primers were purchased 

from Qiagen: Acta2 (#QT00140119), Il10 (#QT00106169), and Col3a1 (#QT01055516).

Bone marrow transplantation

Eight- to 10-week-old male Ldlr−/− mice were lethally irradiated using a cesium γ source at 

a dose of 1000 rads 4 to 6 hours before transplantation (30). Bone marrow cells were 

collected from the femurs and tibias of donor WT and Fpr2−/− mice by flushing with sterile 

medium and then injected intravenously into the recipient mice, as described previously 

(52). All animal procedures used in this study followed Columbia University’s institutional 

guidelines. Six weeks after bone marrow transplantation (at 14 weeks of age), Ldlr−/− mice 

were fed the Western diet and treated with NPs as above.

Statistics

All results are presented as means ± SEM. P values were calculated using the Student’s t test 

or one-way ANOVA with post hoc Tukey analysis for normally distributed data. For 

nonnormally distributed data, the Mann-Whitney rank sum test was used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Col IV Ac2-26 NPs home to atherosclerotic lesions
Ldlr−/− mice were fed a Western diet for 12 weeks and then injected intravenously with 

Alexa 647–labeled Ac2-26 NPs or Col IV–Ac2-26 NPs. The diet was continued, and aortic 

root sections were analyzed by fluorescence microscopy 5 days later. (A) Images of 4′,6-

diamidino-2-phenylindole (DAPI)–stained aortic root sections showing NPs (red) and nuclei 

(blue). The lesions in each image are outlined. To the right of each main image is a zoomed-

in image of the subendothelial region depicted by the white box. Scale bar, 100 μm. (B) 

Sections of aortic root, spleen, and liver (six sections per mouse) were quantified for mean 

Alexa 647 fluorescence intensity (MFI) using image processing. Data are means ± SEM (n = 

3 separate mice). *P < 0.05 versus Ac2-26, Student’s t test.
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Fig. 2. Col IV–Ac2-26 NPs increase subendothelial collagen in Ldlr−/− mice with established 
atherosclerosis
Ldlr−/− mice were fed the Western diet for 12 weeks and then injected intravenously with 

vehicle, free Ac2-26, or Col IV NPs containing scrambled peptide (Scrm) or Ac2-26 once 

per week for 5 weeks, with the mice remaining on the diet. (A) Aortic root sections from the 

indicated groups of mice were stained with picrosirius red. The pair of images from the 17-

week Col IV–Scrm NP and Col IV–Ac2-26 NP cohorts (left) shows examples of measuring 

lines used to measure cap thickness. The microscopic images were quantified by image 

processing for fibrous cap thickness/lesion area ratio, expressed as arbitrary ratio units (AU) 

(right). Data are individual mice, with means shown as horizontal lines (n = 8 to 10 separate 

mice, two sections per mouse). Scale bar, 100 μm. (B) Collagenase activity quantified in 

aortic root sections using fluorescence microscopy and image processing. Data are 

individual mice, with means shown as horizontal lines (n = 8 to 10 separate mice, two 

sections per mouse). (C) RNA from the aortic root lesions of five mice per treatment group 

was obtained by laser capture microdissection (LCM), pooled, and quantified by reverse 

transcription quantitative polymerase chain reaction (RT-qPCR) for Col3a1 mRNA, with 

normalization to lesional Actb mRNA. Data are means ± SEM. ***P < 0.001 versus all 

other groups, one-way analysis of variance (ANOVA) with post hoc Tukey analysis.
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Fig. 3. Col IV–Ac2-26 NPs suppress lesional superoxide and increase lesional Il10 mRNA in 
Ldlr−/− mice with established atherosclerosis
(A to C) Ldlr−/− mice were fed the Western diet for 12 weeks and then injected 

intravenously with vehicle, free Ac2-26, or Col IV NPs containing scrambled peptide 

(Scrm) or Ac2-26 once per week for 5 weeks, with the mice remaining on the diet. (A) 

Superoxide (DHE), macrophages (Mac3), and DAPI nuclear staining were assessed by 

fluorescence microscopy, and the percent of DHE+Mac3+ double-labeled intimal cells per 

total DAPI+ intimal cells was quantified using image processing. Nuclear (B) and non-

nuclear (C) 8-OHdG staining in Mac3+ cells as a percentage of total lesional Mac3+ cell was 

quantified by fluorescence microscopy and image processing. Data are individual mice, with 

means shown as horizontal lines (n = 8 to 10, two sections per mouse). (D) Lesional Il10 

mRNA was quantified by RT-qPCR, with normalization to lesional Actb mRNA. Data are 

means ± SEM (n = 8 to 10 separate mice, two sections per mouse). **P < 0.01, ***P < 

0.001 versus all other groups, one-way ANOVA with post hoc Tukey analysis.
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Fig. 4. Col IV–Ac2-26 NPs exert atheroprotective actions in myeloid-derived cells in an FPR2/
ALX-dependent manner
Ldlr−/− mice were transplanted with bone marrow from WT or Fpr2−/− bone marrow. (A) 

Aortic root sections were stained with hematoxylin and eosin (H&E) (left), and cap 

thickness was quantified (right). Scale bar, 100 μm. (B) Collagenase activity was quantified 

in aortic root sections using fluorescence microscopy and image processing. (C) Superoxide 

(DHE) was assessed by fluorescence microscopy. Data are for individual mice, with means 

shown as horizontal lines (n = 5 separate mice, two sections per mouse). **P < 0.01 versus 

all other groups, one-way ANOVA with post hoc Tukey analysis.
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Fig. 5. Col IV–Ac2-26 NPs decrease lesion area, necrotic area, and oxidative stress in 
brachiocephalic arterial plaques
Ldlr−/− mice were fed the Western diet for 12 weeks and then injected intravenously with 

Col IV NPs containing scrambled peptide (Scrm) or Ac2-26 once per week for 5 weeks, 

with the mice remaining on the diet. (A and B) Representative whole-mount (A) or cross-

sectioned specimens (B) of BCA lesions were visualized en bloc or in cross section. Scale 

bar, 100 μm. (C to F) Cross sections were quantified for lesion area (C), necrotic area (D), 

ICAM immunostaining (E), and superoxide (DHE fluorescence) (F). Data are for individual 

mice, with means shown as horizontal lines (n = 8 to 10 separate mice, two sections per 

mouse). *P < 0.05, **P < 0.01, ***P < 0.001, Student’s t test.
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