19 research outputs found

    Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options

    Get PDF
    Objective: Echinococcosis is a major parasitic zoonosis of public health importance in western China. In 2004, the Chinese Ministry of Health estimated that 380,000 people had the disease in the region. The Qinghai-Tibet Plateau is highly co-endemic with both alveolar echinococcosis (AE) and cystic echinococcosis (CE). In the past years, the Chinese government has been increasing the financial support to control the diseases in this region. Therefore, it is very important to identify the significant risk factors of the diseases by reviewing studies done in the region in the past decade to help policymakers design appropriate control strategies. Review: Selection criteria for which literature to review were firstly defined. Medline, CNKI (China National Knowledge Infrastructure), and Google Scholar were systematically searched for literature published between January 2000 and July 2011. Significant risk factors found by single factor and/or multiple factors analysis were listed, counted, and summarized. Literature was examined to check the comparability of the data; age and sex specific prevalence with same data structures were merged and used for further analysis. A variety of assumed social, economical, behavioral, and ecological risk factors were studied on the Plateau. Those most at risk were Tibetan herdsmen, the old and female in particular. By analyzing merged comparable data, it was found that females had a significant higher prevalence, and a positive linearity relationship existed between echinococcosis prevalence and increasing age. In terms of behavioral risk factors, playing with dogs was mostly correlated with CE and/or AE prevalence. In terms of hygiene, employing ground water as the drinking water source was significantly correlated with CE and AE prevalence. For definitive hosts, dog related factors were most frequently identified with prevalence of CE or/and AE; fox was a potential risk factor for AE prevalence only. Overgrazing and deforestation were significant for AE prevalence only. Conclusion: Tibetan herdsmen communities were at the highest risk of echinococcosis prevalence and should be the focus of echinococcosis control. Deworming both owned and stray dogs should be a major measure for controlling echinococcosis; treatment of wild definitive hosts should also be considered for AE endemic areas. Health education activities should be in concert with the local people's education backgrounds and languages in order to be able to improve behaviors. Further researches are needed to clarify the importance of wild hosts for AE/CE prevalence, the extent and range of the impacts of ecologic changes (overgrazing and deforestation) on the AE prevalence, and risk factors in Tibet

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays

    No full text
    Xue-Qin Yang1,2, Chuang Chen1, Chun-Wei Peng1, Jin-Xuan Hou1, Shao-Ping Liu1, Chu-Bo Qi3, Yi-Ping Gong4, Xiao-Bo Zhu5, Dai-Wen Pang6, Yan Li1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory on Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan; 2Medical School of Jingchu University of Technology, Jingmen; 3Department of Pathology; 4Department of Breast Surgery, Hubei Cancer Hospital, Wuhan; 5Wuhan Jiayuan Quantum Dots Co Ltd and Wuhan Tumor Nanometer Diagnosis Engineering Research Center, Wuhan; 6Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, and State Key Laboratory of Virology, Wuhan University, Wuhan, People's Republic of China Background: The epidermal growth factor receptor (EGFR) is a promising therapeutic target in cancer, but its clinical value in breast cancer remains controversial. Our previous studies have found that quantitative analysis of biomarkers with quantum dot-based nanotechnology had better detection performance than conventional immunohistochemistry. The present study was undertaken to investigate the prognostic value of EGFR in breast cancer using quantum dot-based quantitative spectral analysis. Methods: EGFR expression in 65 breast cancer specimens was detected by immunohistochemistry and quantum dot-immunohistochemistry, and comparisons were made between the two methods. EGFR expression in tissue microarrays of 240 breast cancer patients was then detected by quantum dot-immunohistochemistry and spectral analysis. The prognostic value of EGFR immunofluorescence area (EGFR area) for five-year recurrence-free survival was investigated. Results: The same antigen localization, high correlation of staining rates (r = 0.914), and high agreement of measurement (κ= 0.848) of EGFR expression in breast cancer were found by quantum dot-immunohistochemistry and immunohistochemistry. The EGFR area showed significant differences by tumor grade, lymph node status, HER2 status, and hormone receptor status (all P < 0.05). Patients in the large EGFR area (≥30.51) group had a significantly higher five-year recurrence rate (47.2% versus 27.4%, P = 0.002) and worse five-year recurrence-free survival (log-rank test, P = 0.0015) than those in the small EGFR area (<30.51) group. In the subgroups, EGFR area was an independent prognosticator in the HER2-positive and lymph node-positive subgroups. Conclusion: Quantum dot-based quantitative detection demonstrates the prognostic value of EGFR area in the HER2-positive and lymph node-positive subgroups of invasive breast cancer. Keywords: quantum dots, breast cancer, epidermal growth factor receptor, quantitative analysis, recurrence-free survival, prognosis&nbsp
    corecore