994 research outputs found

    System size dependence of strange particle yields and spectra at sqrt(s)=17.3 GeV

    Get PDF
    Yields and spectra of strange hadrons (K+, K-, phi, Lambda and Antilambda) as well as of charged pions were measured in near central C+C and Si+Si collisions at 158 AGeV beam energy with the NA49 detector. Together with earlier data for p+p, S+S and Pb+Pb reactions the system size dependence can be studied. Relative strangeness production rises fast and saturates at about 60 participating nucleons; the net hyperon spectra show an increasing shift towards midrapidity for larger colliding nuclei. An interpretation based on the formation of coherent systems of increasing volume is proposed. The transverse mass spectra can be described by a blast wave ansatz. Increasing flow velocity is accompanied by decreasing temperatures for both kinetic and chemical freeze out. The increasing gap between inelastic and elastic decoupling leaves space for rescattering.Comment: 8 pages, 6 figures, Proceedings of the Hot Quarks 2004 worksho

    Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon

    Get PDF
    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.

    Scattering Of Obliquely Incident Rayleigh Waves by a Surface-Breaking Crack

    Get PDF
    Recent results on reflection, transmission and scattering of obliquely incident Rayleigh surface waves by an infinitely long surface-breaking crack are reviewed. Sets of crack-opening displacements for infinitely long cracks with various depths are used to construct approximate crack-opening fields for the scattering of a Rayleigh wave by a surface-breaking crack of large length-to-depth ratio. The scattered surface-wave fields for the finite-length crack are subsequently obtained by the use of a representation integral over an appropriate Green’s function and the approximate crack-opening displacements. Polar diagrams are presented for the amplitude of the scattered surface-wave field

    An ensemble indicator-based density estimator for evolutionary multi-objective optimization

    Get PDF
    International audienceEnsemble learning is one of the most employed methods in machine learning. Its main ground is the construction of stronger mechanisms based on the combination of elementary ones. In this paper, we employ AdaBoost, which is one of the most well-known ensemble methods, to generate an ensemble indicator-based density estimator for multi-objective optimization. It combines the search properties of five density estimators, based on the hypervolume, R2, IGD+, ε+, and ∆p quality indicators. Through the multi-objective evolutionary search process, the proposed ensemble mechanism adapts itself using a learning process that takes the preferences of the underlying quality indicators into account. The proposed method gives rise to the ensemble indicator-based multi-objective evolutionary algorithm (EIB-MOEA) that shows a robust performance on different multi-objective optimization problems when compared with respect to several existing indicator-based multi-objective evolutionary algorithms

    Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour

    Get PDF
    The central portion of the midbody, a cytoplasmic bridge between nascent daughter cells at the end of cell division, has generally been thought to be retained by one of the daughter cells, but has, recently, also been shown to be released into the extracellular space. The significance of midbody-retention versus -release is unknown. Here we show, by quantitatively analysing midbody-fate in various cell lines under different growth conditions, that the extent of midbody-release is significantly greater in stem cells than cancer-derived cells. Induction of cell differentiation is accompanied by an increase in midbody-release. Knockdown of the endosomal sorting complex required for transport family members, Alix and tumour-suppressor gene 101, or of their interaction partner, centrosomal protein 55, impairs midbody-release, suggesting mechanistic similarities to abscission. Cells with such impaired midbody-release exhibit enhanced responsiveness to a differentiation stimulus. Taken together, midbody-release emerges as a characteristic feature of cells capable of differentiation

    Neurons of the Dentate Molecular Layer in the Rabbit Hippocampus

    Get PDF
    The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals’ life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections), eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population

    Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam

    Full text link
    There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Such an experiment would be unique in the sense that it would be the only neutrino beam where the baseline crosses the Earth's core. We study the detector requirements for a beta beam, a neutrino factory beam, and a superbeam, where we consider both the cases of small theta_13 and large theta_13, as suggested by the recent T2K and Double Chooz results. We illustrate that a flavor-clean beta beam best suits the requirements of such a detector, in particular, that PINGU may replace a magic baseline detector for small values of theta_13 -- even in the absence of any energy resolution capability. For large theta_13, however, a single-baseline beta beam experiment cannot compete if it is constrained by the CERN-SPS. For a neutrino factory, because of the missing charge identification possibility in the detector, a very good energy resolution is required. If this can be achieved, especially a low energy neutrino factory, which does not suffer from the tau contamination, may be an interesting option for large theta_13. For the superbeam, where we use the LBNE beam as a reference, electron neutrino flavor identification and statistics are two of the main limitations. Finally, we demonstrate that, at least in principle, neutrino factory and superbeam can measure the density of the Earth's core to the sub-percent level for sin^2 2theta_13 larger than 0.01.Comment: 34 pages, 15 figures. Minor changes and accepted in JHE

    A Review on Automatic Analysis of Human Embryo Microscope Images

    Get PDF
    Over the last 30 years the process of in vitro fertilisation (IVF) has evolved considerably, yet the efficiency of this treatment remains relatively poor. The principal challenge faced by doctors and embryologists is the identification of the embryo with the greatest potential for producing a child. Current methods of embryo viability assessment provide only a rough guide to potential. In order to improve the odds of a successful pregnancy it is typical to transfer more than one embryo to the uterus. However, this often results in multiple pregnancies (twins, triplets, etc), which are associated with significantly elevated risks of serious complications. If embryo viability could be assessed more accurately, it would be possible to transfer fewer embryos without negatively impacting IVF pregnancy rates. In order to assist with the identification of viable embryos, several scoring systems based on morphological criteria have been developed. However, these mostly rely on a subjective visual analysis. Automated assessment of morphological features offers the possibility of more accurate quantification of key embryo characteristics and elimination of inter- and intra-observer variation. In this paper, we describe the main embryo scoring systems currently in use and review related works on embryo image analysis that could lead to an automatic and precise grading of embryo quality. We summarise achievements, discuss challenges ahead, and point to some possible future directions in this research field

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore