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Recent results on reflection. transmission and scattering of 
obliquely incident Rayleigh surface waves by an infinitely long 
surface-breaking crack are reviewed. Sets of crack-opening dis
placements for infinitely long cracks with various depths are used 
to construct approximate crack-opening fields for the scattering 
of a Rayleigh wave by a surface-breaking crack of large 1ength-to
depth ratio. The scattered surface-wave fields for the finite
length crack are subsequently obtained by the use of a representa
tion integral over an appropriate Green's function and the approxi
mate crack-opening displacements. Polar diagrams are presented for 
the amplitude of the scattered surface~ave field. 

INTRODUCTION 

Scattering of both surface waves and body waves by a sub
surface crack has been analyzed in Refs. [1] and [2]. Scattering 
by a surface-breaking crack. under normal incidence, has been 
treated by Mendelsohn et a1.[3]. More recently some interesting 
resonance effects have been found for the scattering by a near
surface parallel crack (see Ref.[4]). In addition, various 
approximate methods to compute scattered fields for surface-breaking 
and sub-surface cracks have been discussed in Refs.[S]-[8]. 
Scattering of horizontally polarized waves by sub-surface and 
surface-breaking cracks of arbitrary orientation has been analyzed 
by Mal [9] and Datta [10]. respectively. 

In this paper we first review some results of Ref. [11] for the 
reflection. transmission and scattering of a plane Rayleigh surface 
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wave by an infinitely long surface-breaking crack, when the wave 
is incident under arbitrary angle. As in Ref.[3] it is convenient 
to decompose the formulation into two problems. The first problem 
deals with the physically symmetric fields relative to the plane 
of the crack. and the second problem deals with the antisymmetric 
fields. The symmetric problem is governed by a single singular 
integral equation for the opening-mode dislocation density. The 
antisymmetric problem is, however, governed by a system of two 
coupled singular integral equations for the two sliding-mode 
dislocation densities. In Ref.[ll] the singular integral equations 
have been solved numerically. Once the dislocation densities are 
known. the fields of reflected and transmitted surface waves can 
be computed by the use of representation integrals. 

The scattering problem is then reconsidered for the case of a 
surface-breaking crack of finite dimensions. The results obtained 
previously for an infinite crack are used to derive an approxima
tion to the field scattered by a finite crack. Polar plots show 
the angular variations of the scattered-field amplitude at large 
distances from the crack. 
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Reflection and transmission of a Rayleigh surface 
wave (incident surface wave) incident on an infinite 
crack of depth d. 
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INFINITELY LONG CRACK 

We consider a homogeneous, isotropic, linearly elastic half
space which contaIns a surface-breaking crack of depth d, normal 
to the free surface, as shown in Fig. 1. The crack lies in the 
plane Xl = 0 and extends to infinity in the ±x3 directions. Let 

~ and v denote the shear modulus and Poisson's ratio. The slow
nesses of surface, longitudinal and transverse waves will be 
referred to as sR' sL and sT' respectively. It is then convenient 

to define the following parameters: 

The incident Rayleigh surface wave travels over the free surface 
x2 = O. The angle of incidence X is measured from the normal. 

Let u and w denote an amplitude factor and the frequency of the 
o 

incident wave. 

We will consider time-harmonic waves. Since there is trans
lational invariance with respect to the x3-axis, the term 

exp[-iw(t-sRx3sinx)] is common to all field variables. In the 

sequel this term is omitted. The displacements generated by the 
incident wave can then be written as: 

(2a,b.c) 

where 

-WSRGLX 2 -WSRGTX 2 
[xje + (l-Xj )e ]exp (iwsRxl cosX) , 

(j = 1.2.3) (3) 

x = 1 - X , 2 1 (4) 

(5) 

In the plane of the crack (Xl = 0). the stresses associated with 

the displacements (2) take the form: 



178 Y. C. ANGEL ET AL. 

(i = 1,2,3) , (6) 

where the functions 0i are readily obtained by the use of Eqs.(2) 

and Hooke's law. 

The total field in the half-space can be analyzed as the 
superposition of the incident field in an uncracked half-space and 
the scattered field in the cracked half-space. The scattered 
field, which can be thought of as being generated by prescribed 
surface tractions on the faces of the crack, is conveniently 
decomposed into physically symmetric and antisymmetric fields 
relative to the plane xl = O. The prescribed surface tractions on 

the crack faces are equal in magnitude, but opposite in sign, to 
the tractiom of Eq. (6) • The symmetric and antisymmetric fields 
can be determined from the solutions of two independent mixed
boundary-value problems for the quarter-space defined by 
Xl ~ 0, x2 ~ 0 and ~ < x3 < ~. The symmetric problem is defined 

by the boundary conditions: 

02i = 0 X = 0 2 (7a) 

all = -p uool (x2) o < x2 < d, Xl 0 (7b) 

0 12 ,013 0 Xl 0 (7c) 

u = 0 d < x2 < co Xl = 0 (7d) 
1 

The antisymmetric problem is defined by: 

°2i = 0 X = 0 2 (Ba) 

0 12 = -p uo0 2(x2) 0 < x2 < d Xl 0 (Bb) 

0 13 = -p uo03(x2) 0 < x2 < d • Xl = 0 (Bc) 

an = 0 Xl = 0 (Bd) 

u2,u3 = 0 d < x2 < QO X = 0 1 (Be) 

In both Eqs.(7) and (8), the subscript i TUna from 1 to 3. 

It is shown in Ref. [Ill that the formulation of the problem 
can be reduced to two systems of singular integral equations of 
the first kind. The unknown functions in these equations are the 
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symmetric-mode (I) and antisymmetric-mode (11,111) dislocation 
densities across the crack faces. The symmetric-mode dislocation 
density is governed by a single integral equation, while the two 
antisymmetric-mode dislocation densities are governed by a pair of 
coupled integral equations. The singular integral equations are 
stated in Ref.[ll]. 

The integral equations can be solved numerically by using the 
methods discussed in Refs. [13] and [14]. It suffices to prescribe 
the values of three dimensionless parameters. They are: 
Poisson's ratio v, the angle of incidence X. and the frequency of 
excitation w = d/AR, where AR = 2~/wsR is the wavelength of sur-

face waves in the solid. All other dimensionless parameters can be 
written in terms of these three basic parameters. 

The crack-opening displacements are readily obtained by 
integration once the dislocation densities are known. Curves for 
the displacements in the xl-direction are shown in Fig. 2. Four 

angles of incidence (X = 0°, 45°, 75° and 89.5°) and two fre
quencies (corresponding to d/AR = 0.2 and 0.9) have been chosen. 
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Fig. 2: Crack-opening displacements for various angles of 
incidence X, for d/AR = 0.2 (a) and d/AR = 0.9 (b); 
v = 0.3. 

REFLECTION AND TRANSMISSION COEFFICIENTS 

The radiated wave motion at a large distance from the plane 
of the infinitely long crack can be investigated by writing an 
asymptotic expansion for the displacement field as IXII + ~. It 

is found that the leading terms in the asymptotic expansions are 
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non-decaying, while the next terms decay as rapidly as l/lxll~, 
as I xII -+ co. The non-decaying terms follow from the presence of 

pole singularities in the representation integrals. The details 
are given in Ref.[ll). 

The far-field displacements have the same form as those of 
the incident Rayleigh wave (see Eq.(2». When xl is positive, 

the symmetric and antisymmetric displacements are for Rayleigh 
waves propagating under an angle X with the positive xl axis 

s A (see Fig. I), with amplitudes u and u respectively. When xl 
o 0 

is negative, they are for Rayleigh waves propagating under an 
angle X with the negative xl axis, with amplitudes uS and - uA• 

o 0 

We define the reflected Rayleigh surface wave as the sum of 
the two waves propagating in the negative xl-direction. For 

xl > 0, the transmitted Rayleigh surface wave is defined as the 

sum of three waves: the incident wave and the two waves propa
gating in the positive xl-direction. The amplitudes of the 

reflected and transmitted surface waves are uS - uA and 
,s A 0 0 

u + u + u ,respectively. The reflection coefficient A and 
000 r 

the transmission coefficient At are defined by 

s A A = (u - u )/u , roo 0 

s A At = (u + u + u )/u • o 0 0 0 

s A In general. the displacements u and u are complex numbers. o 0 

( 9) 

Hence, the displacements of the reflected and transmitted surface 
waves differ from those of the incident surface wave both in phase 
and modulus. The fractions of time-averaged incident energy flux 
carried by the reflected and transmitted surface waves are equal 

to IA 12 and IA 12. respectively. The quantity 
r t 

<P > = I - IA 12 - IA 12 rad r t (10) 

is then the fraction of time-averaged incident energy flux radiated 
into the solid by body waves. 

In Ref. [11) curves have been presented for the reflection and 
transmission coefficients both versus the angle of incidence X for 
fixed frequency and versus d/AR (AR = wavelength of surface waves) 

for fixed angle of incidence. For angles of incidence larger than 
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a critical angle Xc = arcsin(nR) the nature of the scattering pro

cess changes. For v = 0.3 we have X ~ 68°. When X > X , the 
c c 

apparent speed of the incident wave along the faces of the crack is 
less than the speed of transverse waves. Consequently, only non
propagating body-wave modes are excited over the crack faces (see 
Freund [15]). All energy transported to the crack by the incident 
wave must be carried away by the reflected and transmitted surface 
waves. Hence, it follows from Eq.(lO) that 

< Prad > = 0 , for X > Xc· (ll) 

This result has indeed been verified numerically for two different 
frequencies. In fact, Eq.(ll) provides us with a criterion for 
checking the validity of the numerical calculations in the range 
X > Xc. For all values of X tested in this range it is found that 

< P d > is less than 10-13 in absolute value. A figure for ra 
< Prad> versus the angle of incidence, for two values of d/AR,is 

presented in Ref.[ll]. 
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Fig. 3: Scattering of a Rayleigh surface wave (incident surface 
wave) incident on a crack of finite dimensions. Illus
tration of the method to evaluate the scattered field. 

CRACK OF FINITE DIMENSIONS 

Next we consider a crack of finite dimensions in the plane 
Xl 0, as shown in Fig. 3. The incident wave is the same as that 
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of Eq.(2). In this section we investigate the radiated wave motion 
at an observation point ~' located on the free surface at a large 

distance from the origin in the direction e. The total field in 
the half-space is written as the superposition of the incident 
field in an uncracked half-space and the scattered field in the 
cracked half-space. The scattered displacement-field at ~' can be 

written in the form 

(12) 

where 

+ = u. - u 
J j 

(13) 

GR 
and 0ij;k is the Rayleigh wave contribution to the Green's 

tensor o~. k (see Harris et al.[16]). The area of the crack is 
~J ; 

denoted by A. The plus superscript refers to the face that lies 
in the region xl > 0 and the minus superscript to the face in the 

region xl < O. 

The integral representation (12) is used to obtain an approxi
mation to the scattered field. In fact. the exact crack-face 
displacements ~Uj. which are unknown. are replac~d in Eq. (12) by 

the displacements obtained for infinite cracks of various depths, 
Figure 3 illustrates this approximation. The area A of the crack 
is broken up into n rectangular strips AI. ". An' The p-strip 

has depth d. Then. instead of (12). we write: 
p 

n 
uk(~') ~ L 

p=l 
J 
A 

P 

OGl~ k{x,x')~u~{X)dA{x) , 
J; - - J - -

(14) 

where ~u~ is the displacement-discontinuity across the faces of 
J 

an infinite crack of depth d. Using the results of Appendix A in 
p 

Harris et al. [16], we find that: 

GR ( ') 0 1 , k x,x 
J; --

A 
o t; Uk (~ , ,e) 

(wsRr) 
L.{X) 

J -

where Uk(~',e) are the displacements for a Rayleigh wave of 

(15 ) 
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amplitude unity, propagating at an angle e from the xl-axis 

(see Fig. 3 and Eq.2 and recall that the x3-dependence in Eq.(15) 

is of the form exp(iwsRx3sine». The angle e is defined by: 

cose=(xi-x1)/r. sine = (x3-x3)/r, r = [(xi-x1)2+(x3-x3)2]~. (16) 

Also. we have 

where 

T 2/ 2 Z - 2 2 2 2· 2e Z 1 nR, 11 - nR + aL - S1n , 12 

T3 = sin(2e) , Z31 = 1 -Z32 = 2/n~ , 

R(u) = (2u 2-1)2- 4u2(u2_1)~(u2_E2)~. 

(17) 

(19) 

(20a) 

(20b) 

(20c) 

(21) 

Next, recall the x3-dependence of the crack-face displacements: 

~u~(O,x2,x3) = ~u~(o,x2)exp(iwsRx3sinx) • (22) 

Substitution of (15) and (22) into (14), together with the 
approxima tions 

1 

r = «xi)2 + (x3)2)~, tane = x3/xi ' (23) 

which are valid when the observation point is at a large distance 
from the crack, yields a result of the form 

~ 
uk(~') = E(e,x,d/AR)(~) Uk(~',e) , (24) 

where d is the depth of the crack at x3 = 0 and E depends not only 

on the parameters e.X and d/AR, but also on the shape of the crack 

and Poisson's ratio. 
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Fig. 4: Scattering coefficient for a semi-elliptical crack; 
(a) ~d = 1, X = 0°(-----) and X 45° (----); 

(b) ~d = 5 and X = 0°; (c) kRd = 5 and X = 45°; 

v = 0.3. 

For a semi-elliptical crack defined by the equations 

(25) 

and a choice of ten rectangular strips such that 

IX31/2d = 0 • 1/3. 7/12. 47/60. 57/60, 1 • (26) 

the modulus of the scattering coefficient E(8.x,d/AR)/(2uo) is 

shown in Fig. 4. These curves are polar curves of the observation 
angle 8. Two angles of incidence (X = 0° and 45°) and two fre
quencies (~d = wsRd = 1 and 5) have been chosen. We observe 

diffraction lobes at the larger frequency. 
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