522 research outputs found
Antiflow of kaons in relativistic heavy ion collisions
We compare relativistic transport model calculations to recent data on the
sideward flow of neutral strange K^0_s mesons for Au+Au collisions at 6 AGeV. A
soft nuclear equation of state is found to describe very well the positive
proton flow data measured in the same experiment. In the absence of kaon
potential, the K^0 flow pattern is similar to that of protons. The kaon flow
becomes negative if a repulsive kaon potential determined from the impulse
approximation is introduced. However, this potential underestimates the data
which exhibits larger antiflow. An excellent agreement with the data is
obtained when a relativistic scalar-vector kaon potential, that has stronger
density dependence, is used. We further find that the transverse momentum
dependence of directed and elliptic flow is quite sensitive to the kaon
potential in dense matter.Comment: 5 pages, Revtex, 4 figure
Top A_FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets
We consider the top forward-backward (FB) asymmetry at the Tevatron and top
charge asymmetry at the LHC within chiral U(1)^\prime models with
flavor-dependent U(1)^\prime charges and flavored Higgs fields, which were
introduced in the ref. [65]. The models could enhance not only the top
forward-backward asymmetry at Tevatron, but also the top charge asymmetry at
LHC, without too large same-sign top pair production rates. We identify
parameter spaces for the U(1)^\prime gauge boson and (pseudo)scalar Higgs
bosons where all the experimental data could be accommodated, including the
case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.Comment: 11 pages, 6 figures, figures and discussion adde
Partonic effects on the elliptic flow at relativistic heavy ion collisions
The elliptic flow in heavy ion collisions at RHIC is studied in a multiphase
transport model. By converting the strings in the high energy density regions
into partons, we find that the final elliptic flow is sensitive to the parton
scattering cross section. To reproduce the large elliptic flow observed in
Au+Au collisions at GeV requires a parton scattering cross
section of about 6 mb. We also study the dependence of the elliptic flow on the
particle multiplicity, transverse momentum, and particle mass.Comment: 7 pages, 7 figures, revtex, text added to detail the procedure for
conversions between hadrons and parton
Rebirth of X-ray Emission from the Born-Again Planetary Nebula A 30
The planetary nebula (PN) A30 is believed to have undergone a very late
thermal pulse resulting in the ejection of knots of hydrogen-poor material.
Using HST images we have detected the angular expansion of these knots and
derived an age of 850+280-150 yr. To investigate the spectral and spatial
properties of the soft X-ray emission detected by ROSAT, we have obtained
Chandra and XMM-Newton observations of A30. The X-ray emission from A30 can be
separated into two components: a point-source at the central star and diffuse
emission associated with the hydrogen-poor knots and the cloverleaf structure
inside the nebular shell. To help us assess the role of the current stellar
wind in powering this X-ray emission, we have determined the stellar parameters
of the central star of A 30 using a non-LTE model fit to its optical and UV
spectrum. The spatial distribution and spectral properties of the diffuse X-ray
emission is suggestive that it is generated by the post-born-again and present
fast stellar winds interacting with the hydrogen-poor ejecta of the born-again
event. This emission can be attributed to shock-heated plasma, as the
hydrogen-poor knots are ablated by the stellar winds, under which circumstances
the efficient mass-loading of the present fast stellar wind raises its density
and damps its velocity to produce the observed diffuse soft X-rays. Charge
transfer reactions between the ions of the stellar winds and material of the
born-again ejecta has also been considered as a possible mechanism for the
production of diffuse X-ray emission, and upper limits on the expected X-ray
production by this mechanism have been derived. The origin of the X-ray
emission from the central star of A 30 is puzzling: shocks in the present fast
stellar wind and photospheric emission can be ruled out, while the development
of a new, compact hot bubble confining the fast stellar wind seems implausible.Comment: 29 pages, 11 figures, 4 tables; accepted for publication by Ap
Presenting a simplified assistant tool for breast cancer diagnosis in mammography to radiologists
This paper proposes a method to simplify a computational model from logistic regression for clinical use without computer. The model was built using human interpreted featrues including some BI-RADS standardized features for diagnosing the malignant masses. It was compared with the diagnosis using only assessment categorization from BI-RADS. The research aims at assisting radiologists to diagnose the malignancy of breast cancer in a way without using automated computer aided diagnosis system
Search for sterile neutrino oscillation using RENO and NEOS data
We present a reactor model independent search for sterile neutrino
oscillation using 2\,509\,days of RENO near detector data and 180 days of NEOS
data. The reactor related systematic uncertainties are significantly suppressed
as both detectors are located at the same reactor complex of Hanbit Nuclear
Power Plant. The search is performed by electron
antineutrino\,() disappearance between six reactors and two
detectors with baselines of 294\,m\,(RENO) and 24\,m\,(NEOS). A spectral
comparison of the NEOS prompt-energy spectrum with a no-oscillation prediction
from the RENO measurement can explore reactor oscillations
to sterile neutrino. Based on the comparison, we obtain a 95\% C.L. excluded
region of \,eV. We also obtain a 68\% C.L. allowed
region with the best fit of \,eV and
=0.080.03 with a p-value of 8.2\%. Comparisons of
obtained reactor antineutrino spectra at reactor sources are made among RENO,
NEOS, and Daya Bay to find a possible spectral variation.Comment: 6 pages, 5 figures: This manuscript has been significantly revised by
the joint reanalysis by RENO and NEOS Collaborations. (In the previous
edition, the RENO collaboration used publicly available NEOS data to evaluate
the expected neutrino spectrum at NEOS.
The COSINE-100 liquid scintillator veto system
This paper describes the liquid scintillator veto system for the COSINE-100 dark matter experiment and its performance. The COSINE-100 detector consists of eight NaI(Tl) crystals immersed in 2200 L of linear alkylbenzene-based liquid scintillator. The liquid scintillator tags between 65 and 75% of the internal 40K background in the 2â6 keV energy region. We also describe the background model for the liquid scintillator, which is primarily used to assess its energy calibration and threshold
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
- âŚ