535 research outputs found

    Laboratory simulation of cometary x rays using a high-resolution microcalorimeter

    Full text link
    X-ray emission following charge exchange has been studied on the University of California Lawrence Livermore National Laboratory electron beam ion traps EBIT-I and EBIT-II using a high-resolution microcalorimeter. The measured spectra include the K-shell emission from hydrogenlike and heliumlike C, N, O, and Ne needed for simulations of cometary x-ray emission. A comparison of the spectra produced in the interaction of O8+ with N2 and CH4 is presented that illustrates the dependence of the observed spectrum on the interaction gas.Comment: 11 pages, 2 figure

    Multipole (E1, M1, E2, M2, E3, M3) transition wavelengths and rates between 3l5l' excited and ground states in nickel-like ions

    Get PDF
    A relativistic many-body method is developed to calculate energy and transition rates for multipole transitions in many-electron ions. This method is based on relativistic many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest-order, includes all second-order correlation corrections and includes corrections from negative energy states. Reduced matrix elements, oscillator strengths, and transition rates are calculated for electric-multipole (dipole (E1), quadrupole (E2), and octupole (E3)) and magnetic-multipole (dipole (M1), quadrupole (M2), and octupole (M3)) transitions between 3l5l' excited and ground states in Ni-like ions with nuclear charges ranging from Z = 30 to 100. The calculations start from a 1s22s22p63s23p63d10} Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. A detailed discussion of the various contributions to the dipole matrix elements and energy levels is given for nickellike tungsten (Z = 74). The contributions from negative-energy states are included in the second-order E1, M1, E2 M2, E3, and M3 matrix elements. The resulting transition energies and transition rates are compared with experimental values and with results from other recent calculations. These atomic data are important in modeling of M-shell radiation spectra of heavy ions generated in electron beam ion trap experiments and in M-shell diagnostics of plasmas.Comment: 21 pages, 8 figures, 11 table

    Critical Test of Simulations of Charge-Exchange-Induced X-Ray Emission in the Solar System

    Full text link
    Experimental and theoretical state-selective X-ray spectra resulting from single-electron capture in charge exchange (CX) collisions of Ne^10+ with He, Ne, and Ar are presented for a collision velocity of 933 km s^-1 (4.54 keV nucleon^-1), comparable to the highest velocity components of the fast solar wind. The experimental spectra were obtained by detecting scattered projectiles, target recoil ions, and X-rays in coincidence; with simultaneous determination of the recoil ion momenta. Use and interpretation of these spectra are free from the complications of non-coincident total X-ray measurements that do not differentiate between the primary reaction channels. The spectra offer the opportunity to test critically the ability of CX theories to describe such interactions at the quantum orbital angular momentum level of the final projectile ion. To this end, new classical trajectory Monte Carlo calculations are compared here with the measurements. The current work demonstrates that modeling of cometary, heliospheric, planetary, and laboratory X-ray emission based on approximate state-selective CX models may result in erroneous conclusions and deductions of relevant parameters.Comment: 4 figure

    The X-ray spectrum of Fe XVII revisited with a multi-ion model

    Full text link
    The theoretical intensities of the soft X-ray Fe XVII lines arising from 2l-3l' transitions are reexamined using a three-ion collisional-radiative model that includes the contributions to line formation of radiative recombination (RR), dielectronic recombination (DR), resonant excitation (RE), and inner-shell collisional ionization (CI), in addition to the usual contribution of collisional excitation (CE). These additional processes enhance mostly the 2p-3s lines and not the 2p-3d lines. Under coronal equilibrium conditions, in the electron temperature range of 400 to 600 eV where the Fe XVII line emissivities peak, the combined effect of the additional processes is to enhance the 2p-3s lines at 16.78, 17.05, and 17.10 A, by ~ 25%, 30%, and 55%, respectively, compared with their traditional, single-ion CE values. The weak 2p-3d line at 15.45 A is also enhanced by up to 20%, while the other 2p-3d lines are almost unaffected. The effects of DR and RE are found to be dominant in this temperature range (400 - 600 eV), while that of CI is 3% at the most, and the contribution of RR is less than 1%. At lower temperatures, where the Fe XVII / Fe XVIII abundance ratio is high, the RE effect dominates. However, as the temperature rises and the Fe XVIII abundance increases, the DR effect takes over. The newly calculated line powers can reproduce most of the often observed high values of the (I17.05 + I17.10) / I15.01 intensity ratio. The importance of ionization and recombination processes to the line strengths also helps to explain why laboratory measurements in which CE is essentially the sole mechanism agree well with single-ion calculations, but do not reproduce the astrophysically observed ratios.Comment: Submitted to Ap

    Non-thermal processes in coronae and beyond

    Full text link
    This contribution summarizes the splinter session "Non-thermal processes in coronae and beyond" held at the Cool Stars 17 workshop in Barcelona in 2012. It covers new developments in high energy non-thermal effects in the Earth's exosphere, solar and stellar flares, the diffuse emission in star forming regions and reviews the state and the challenges of the underlying atomic databases.Comment: To appear in the proceedings of the Cool Stars 17 worksho

    Nuclear-polarization effect to the hyperfine structure in heavy multicharged ions

    Get PDF
    We have investigated the correction to the hyperfine structure of heavy multicharged ions, which is connected with the nuclear-polarization effect caused by the unpaired bound electron. Numerical calculations are performed for hydrogenlike ions taking into account the dominant collective nuclear excitations. The correction defines the ultimate limit of precision in accurate theoretical predictions of the hyperfine-structure splittings

    Solubility and Cation Exchange Properties of Synthetic Hydroxyapatite and Clinoptilolite Mixtures

    Get PDF
    A zeoponic plant growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component. These systems: 1) can serve as a controllable and renewable fertilization system to provide plant growth nutrients; 2) can mitigate the adverse effects of contamination due to leaching of highly soluble and concentrated fertilizers; and 3) are being considered as substrates for plant growth in regenerative life-support systems for long-duration space missions. Batch-equilibrium studies of the dissolution and ion-exchange properties of mixtures of naturally-occurring Wyoming clinoptilolite (a zeolite) exchanged with K(+) or NH4(+); and synthetic hydroxyapatite were conducted to determine: 1) the plant availability of the macro-nutrients NH4-N, P, K, Ca, and Mg and 2) the effects of varying the clinoptilolite to hydroxyapatite ratio and the ratio of exchangeable cations (K(+) vs. NH4(+)) on clinoptilolite extraframework sites. The nutrients NH4-N (19.7 to 73.6 mg L(sup -1), P (0.57 to 14.99 mg L(sup- 1), K (14.8 to 104.9 mg L(sup -1), and Mg (0.11 to 6.68mg L(sup -1) are available to plants at sufficient levels. Solution Ca concentrations (0.47 to 3.40 mg L(sup -1) are less than optimal. Solution concentrations of NH4(+), K(+), Ca(2+), and Mg(2+) all decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. Solution concentrations of phosphorous initially increased, reached a maximum value and then decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. The NH4(+) -exchanged clinoptilolite is more efficient in dissolving synthetic hydroxyapatite than the K(+) -exchanged clinoptilolite. This suggests that NH4(+), which is less selective at clinoptilolite extraframework sites than K(+) is exchanged more readily by Ca(2+) and thereby enhances the dissolution of the synthetic hydroxyapatite
    corecore