277 research outputs found

    Creating invariance to "nuisance parameters" in face recognition

    Get PDF
    A major goal for face recognition is to identify faces where the pose of the probe is different from the stored face. Typical feature vectors vary more with pose than with identity, leading to very poor recognition performance. We propose a non-linear many-to-one mapping from a conventional feature space to a new space constructed so that each individual has a unique feature vector regardless of pose. Training data is used to implicitly parameterize the position of the multi-dimensional face manifold by pose. We introduce a co-ordinate transform, which depends on the position on the manifold. This transform is chosen so that different poses of the same face are mapped to the same feature vector. The same approach is applied to illumination changes. We investigate different methods for creating features, which are invariant to both pose and illumination. We provide a metric to assess the discriminability of the resulting features. Our technique increases the discriminability of faces under unknown pose and lighting compared to contemporary methods

    Management options for the South Australian rock lobster fishery (Jasus edwardsii) fishery: a case study of co-operative assessment and policy design by fishers and biologists

    Get PDF
    A modelling workshop process was used to bring biologists and commercial fishers together to develop a spatial model for population dynamics and harvest regulation of the South Australian rock lobster (Jasus edwardsii) fishery. The resulting model provided a credible reconstruction of how the space, time, and size structures of the stock have changed over the history of the fishery, and offers a rich variety of regulatory policy options for exploration of how the stock might have behaved (and might behave in the future) if managed differently. Initial use of the model has been to test options for reducing risk of recruitment overfishing by increasing spawning stock and egg production. A number of regulations ranging from increased size limits to large spatial refuges could accomplish this risk reduction aim. One option is to simply reduce the fishing season length dramatically. The model predicts that short-term yield loss under this strategy would eventually be regained through increased survival and higher catch rates of larger lobsters, and offers the economic advantage of greatly reduced fishing costs. This policy hypothesis can be tested in the field by a management experiment allowing fishers to see for themselves whether an area with a short season does indeed result in catch rates high enough to compensate for fishing time loss

    Observational constraints on the neutron star mass distribution

    Get PDF
    Radio observations of neutron star binary pulsar systems have constrained strongly the masses of eight neutron stars. Assuming neutron star masses are uniformly distributed between lower and upper bounds mlm_l and mum_u, the observations determine with 95\% confidence that 1.01<ml/M<1.341.01 < m_l/\text{M}_\odot < 1.34 and 1.43<mu/M<1.641.43 < m_u/\text{M}_\odot < 1.64. These limits give observational support to neutron star formation scenarios that suggest that masses should fall predominantly in the range 1.3<m/M<1.61.3<m/\text{M}_\odot<1.6, and will also be important in the interpretation of binary inspiral observations by the Laser Interferometer Gravitational-wave Observatory.Comment: Postscript, 4 pages, NU-GR-

    Deformation of the Planetary Orbits Caused by the Time Dependent Gravitational Potential in the Universe

    Full text link
    In the paper are studied the deformations of the planetary orbits caused by the time dependent gravitational potential in the universe. It is shown that the orbits are not axially symmetric and the time dependent potential does not cause perihelion precession. It is found a simple formula for the change of the orbit period caused by the time dependent gravitational potential and it is tested for two binary pulsars.Comment: 7 page

    Association between plasma neutrophil gelatinase-associated lipocalin and cardiac disease hospitalizations and deaths in older women

    Get PDF
    Background Neutrophil gelatinase-associated lipocalin ( NGAL ) or lipocalin 2 may promote atherosclerosis and plaque instability leading to increased risk of cardiac events. We investigated the relationships between plasma NGAL , cardiovascular disease biomarkers, and long-term cardiac events. Methods and Results The study population consisted of 1131 ambulant older white women (mean age 75 years) without clinical coronary heart disease ( CHD ) and measures of plasma NGAL in the Perth Longitudinal Study of Ageing Women with 14.5-year CHD and heart failure hospitalizations or death (events) captured using linked records. Over 14.5 years, 256 women had CHD events, while 118 had heart failure events. Per SD increase in log-transformed NGAL there was a 35% to 37% increase in relative hazards for CHD and heart failure events in unadjusted analyses, which remained significant after adjustment for conventional risk factors for CHD events (hazard ratio 1.29, 95% CI 1.13-1.48, P0.05). Women in the highest 2 quartiles of NGAL had higher relative hazards for CHD events compared with women in the lowest quartile hazard ratio 1.61, 95% CI 1.08-2.39, P=0.019 and hazard ratio 1.97, 95% CI 1.33-3.93, P=0.001, respectively. These associations were independent of high-sensitivity cardiac troponin I, homocysteine, and estimated renal function. NGAL correctly reclassified 1 in 4 women who sustained a CHD event up in risk and 1 in 10 women without CHD events down in risk. Conclusions NGAL was associated with increased risk of long-term CHD events, independent of conventional risk factors and biomarkers. These findings provide mechanistic insight into the role of NGAL with cardiac events

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore