142 research outputs found

    Resilience: Easy to use but hard to define

    Get PDF
    First conceptualized in the 1970s, resilience has become a popular term in the ecological literature, used in the title, abstract, or keywords of approximately 1% of papers identified by ISI Web of Science in the field of environmental sciences and ecology in 2011. However, many papers make only passing reference to the term and do not explain what resilience means in the context of their study system, despite there being a number of possible definitions. In an attempt to determine how resilience is being used in ecological studies, we surveyed 234 papers published between 2004 and 2011 that were identified under the topic “resilience” by ISI Web of Science. Of these, 38% used the word resilience fewer than three times (often in the abstract or keyword list), 66% did not define the term, and 71% did not provide a citation to the resilience literature. Studies that defined resilience most often discussed it as pertaining to an entire ecosystem under continuous rather than discrete disturbance. Given the complex nature of this concept, we believe that care should be taken to properly describe what is meant by the term resilience in ecological studies

    Biogeochemical Analysis of Ancient Pacific Cod Bone Suggests Hg Bioaccumulation was Linked to Paleo Sea Level Rise and Climate Change

    Get PDF
    Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg) and δ13C/δ15N ratios in the bone collagen of archeologically recovered Pacific Cod (Gadus macrocephalus) bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers

    Groundwater dynamics in coastal gravel barriers backed by freshwater lagoons and the potential for saline intrusion: Two cases from the UK

    Get PDF
    “NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Marine Systems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Marine Systems, [VOL 123, (01.08.13)] DOI 10.1016/j.jmarsys.2013.04.004". The full text is under embargo until 01.08.15

    Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Tests in Coastal Aquifers with Numerical Modelling (Motril-Salobreña Aquifer)

    Get PDF
    Two pumping tests were performed in the unconfined Motril-Salobreña detrital aquifer in a 250 m-deep well 300 m from the coastline containing both freshwater and saltwater. It is an artesian well as it is in the discharge zone of this coastal aquifer. The two observation wells where the drawdowns are measured record the influence of tidal fluctuations, and the well lithological columns reveal high vertical heterogeneity in the aquifer. The Theis and Cooper-Jacob approaches give average transmissivity (T) and storage coefficient (S) values of 1460 m2 /d and 0.027, respectively. Other analytical solutions, modified to be more accurate in the boundary conditions found in coastal aquifers, provide similar T values to those found with the Theis and Cooper-Jacob methods, but give very different S values or could not estimate them. Numerical modelling in a synthetic model was applied to analyse the sensitivity of the Theis and Cooper-Jacob approaches to the usual boundary conditions in coastal aquifers. The T and S values calculated from the numerical modelling drawdowns indicate that the regional flow, variable pumping flows, and tidal effect produce an error of under 10 % compared to results obtained with classic methods. Fluids of different density (freshwater and saltwater) cause an error of 20 % in estimating T and of over 100 % in calculating S. The factor most affecting T and S results in the pumping test interpretation is vertical heterogeneity in sediments, which can produce errors of over 100 % in both parameters.This research has been financed by Project CGL2012-32892 (Ministerio de Economía y Competitividad of Spain) and by the Research Group Sedimentary Geology and Groundwater (RNM-369) of the Junta de Andalucía

    Low-oxygen waters limited habitable space for early animals

    Get PDF
    The oceans at the start of the Neoproterozoic Era (1,000–541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (~550–541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems

    Numerical assessment of 3D macrodispersion in heterogeneous porous media

    Get PDF
    Hydrodynamic dispersion is a key controlling factor of solute transport in heterogeneous porous media that critically depends on dimensionality. It has been shown that the transverse macrodispersion (asymptotic dispersion transverse to the mean velocity direction) vanishes only in 2D and not in 3D. Using classical Gaussian correlated permeability fields with a lognormal distribution of variance σ²y, we determine numerically the longitudinal and transverse dispersivities as functions of heterogeneity and dimensionality. We show that the transverse macrodispersion steeply increases with σ²y underlying the essential role of flow lines braiding, a mechanism specific to 3D systems. The transverse macrodispersion remains however at least two orders of magnitude smaller than the longitudinal macrodispersion, which increases even more steeply with σ²y. At moderate to high levels of heterogeneity, the transverse dispersion also converges much faster to its asymptotic regime than do the longitudinal dispersion. Braiding cannot be thus taken as the sole mechanism responsible for the high longitudinal macrodispersions. It could be either supplemented or superseded by stronger velocity correlations in 3D than in 2D. This assumption is supported by the much larger longitudinal macrodispersions obtained in 3D than in 2D, up to a factor of 7 for σ²y = 7.56

    Trace elements at the intersection of marine biological and geochemical evolution

    Get PDF
    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies
    corecore