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Abstract : 

Hydrodynamic dispersion is a key controlling factor of solute transport in heterogeneous porous media. It 

critically depends on dimensionality. The asymptotic macrodispersion, transverse to the mean velocity 

direction, vanishes only in 2D and not in 3D. Using the classical Gaussian correlated permeability fields with 

a lognormal distribution of variance σ Y

2

, the longitudinal and transverse dispersivities are determined 

numerically as a function of heterogeneity and dimensionality. We show that the transverse macrodispersion 

steeply increases with σ Y

2

 underlying the essential role of flow lines braiding, a mechanism specific to 3D 

systems. The transverse macrodispersion remains however at least two orders of magnitude smaller than the 

longitudinal macrodispersion, which increases even more steeply with σ Y

2

. At moderate to high levels of 

heterogeneity, the transverse macrodispersion also converges much faster to its asymptotic regime than do 

the longitudinal macrodispersion. Braiding cannot be thus taken as the sole mechanism responsible for the 

high longitudinal macrodispersions. It could be either supplemented or superseded by stronger velocity 

correlations in 3D than in 2D. This assumption is supported by the much larger longitudinal 

macrodispersions obtained in 3D than in 2D, up to a factor of 7 for σ Y

2

=7.56. 
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1 Introduction 

Hydrodynamic dispersion is a major component of solute transport in geological media controlling the 

relative solute distribution [21] as well as the mixing-induced chemical reactivity [9]. It results from the 

variability and the correlations of the velocity field over evolving scales from the pore scale to the field scale 

[24]. Hydrodynamic dispersion appears to be a Fickian process where the diffusion coefficient is replaced by 

an equivalent dispersion coefficient, which increases with time as the solute plume samples the heterogeneity 

field. The relation of geological heterogeneity to dispersion processes has been extensively analyzed in 

correlated multi-Gaussian log-permeability fields taken as an idealized model both simple enough to lead to 

general conclusions and complex enough to disclose some of the complex relationships between 

heterogeneity and dispersion [10]. The logarithm of permeability Y(x)=ln(K(x)) is modeled by a normal 

distribution of variance σ Y

2

 following a simple correlation pattern. Here, we will be considering a simple 

isotropic Gaussian correlation function such as <Y'(x)Y'(x')>= y²exp(-(|x-x'|/ )²) where Y'(x)=Y(x)-<Y>, 

<> marks the spatial average and is the correlation length. Whenever heterogeneities are bounded and their 

correlation limited, dispersion reaches an asymptotic regime characterized by an asymptotic dispersion 

coefficient also called macro-dispersion. Perturbation expansions of the flow and advection-diffusion 

equations have shown that macrodispersion is strongly anisotropic [11]. In the direction longitudinal to the 

mean velocity, the macrodispersion DLA is proportional to the correlation length times the lognormal 

permeability variance : DLA=<v> y² with <v> the mean velocity. In the transverse directions, the 

macrodispersion DTA is zero in the absence of local diffusion, i.e. when the local Peclet number is infinite or 

equivalently when velocity heterogeneities are the sole source of dispersion. These analytical estimates are 

valid both in 2D and in 3D for small enough permeability heterogeneities ( σ Y

2

<1). They have been 

confirmed in 2D by numerous numerical studies [20] and have even been found to be robust for values of 
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σ Y

2

 as high as 1.6 [4] and even higher for spherical inclusion systems [13]. At higher heterogeneity levels 

(1< σ Y

2

een confirmed both by homogenization theory 

and numerical simulations [15]. The basic argument is that, in 2D without local diffusion, the solute plume is 

constrained within a given flow tube of finite and stable transverse dimension that strictly limits the 

dispersion. On the contrary for the longitudinal macrodispersion, numerical simulations have shown that it 

can be up to three times larger than the analytical estimate and that it scales with the square of σ Y

2

 for 

σ Y

2

 [8]. The strong increase of the macrodispersion likely comes the higher-order velocity correlations 

as the dependence of the velocity correlation on the velocity magnitude [14]. In 3D, full transport 

simulations on the linearized flow equation show that the transverse macrodispersion DTA is significantly non 

zero [23], which proves to be consistent with predictions based on Corrsin's conjecture [17], and coarse-

graining arguments [1]. For spherical inclusion systems, the transverse macrodispersion is also non vanishing 

but it remains small. It becomes critically larger for elongated ellipsoids [13]. If it has been well established 

that the transverse macrodispersion is non zero, open questions remain on its magnitude as well as on the 

magnitude of the longitudinal macrodispersion and on their behavior for higher heterogeneity levels 

( σ Y

2

>1). We address these issues with 3D extensive simulations of the full flow and transport equations that 

go far beyond the previous attempts [25]. 

2 Model and methods 

The permeability field is generated within a rectangular parallelepiped of dimensions LL, LT1 and LT2 at the 

same resolution  in all directions using a spectral method through the fftw library [12]. The indices "L", 

"T1" and "T2" stand for the three orthogonal directions of the parallelepiped and symbolized the direction 

"L" longitudinal to the main flow direction (defined just after) and the two directions "T1" and "T2" 

orthogonal to it. The flow equation ∇ K∇ h = 0  is solved with fixed heads h+ and h- on the faces 

orthogonal to the longitudinal direction L. Periodic boundary conditions on the other transverse faces 

minimize the perturbation of the flow field generally reported by no-flow boundary conditions [22]. The 

flow equation is discretized by a finite-volume scheme and the resulting linear system is solved with the 

parallel algebraic multigrid method of HYPRE [19]. Velocities v at the grid centers are derived from the 

hydraulic head h by Darcy's law v=−K /θ∇ h . Porosity  is chosen uniform and the mean flow velocity 

<v> is parallel to the L direction. Its norm <v> is equal to K eq/θ ∣h − h−∣/LL  with Keq the equivalent 

permeability [14]. Transport is restricted to the sole advection process and is simulated by a first-order 

explicit particle tracking method [26]. Between t and t+dt, a particle moves from positions x(t) to x(t+dt) 

according to x t dt = x t v [x t ]dt  where the velocity v in each point is obtained with a linear 

interpolation in each direction on the grid [Pollock, 1988]. The time step dt is adapted along the particle 

trajectory to the magnitude of the local velocity so that the particle takes on average 10 steps within each grid 

cell [27]. Particles are injected on a large plane of size 0.8 LT1 0.8 LT2 orthogonal to the L direction located 

at least at five correlation lengths downstream from the side of the system to avoid border effects on the 

velocity statistics. Particles are injected proportionally to the flow through the plane to speed up the 

convergence to the asymptotic regime. Effective dispersivities derived from the dispersion coefficient 

divided by the mean velocity <v> normalized by  (dispersion coefficients divided by the mean velocity <v> 

and ) are determined from NR realizations of the permeability field with NP particles for each realization 

according to: 

α k t =
1

2λ 〈v 〉
1

N R

∑
i= 1

N
R

d

dt [ 1

N p

∑
j= 1

N
p

xk

j ,i
t

2
−

1

N p

∑
j=1

N
p

xk

j ,i
t

2

] (1) 

where xk
j , i

 is the position of the particle j in simulation i in direction k at time t. For consistency we have 

normalized the time t by /<v> and kept the same notation t for simplicity. As we have systematically 

checked that =we report results only for one of them that we generically denote . To reach large 
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enough domain sizes and number of simulations, all numerical methods have been implemented in parallel 

[2]. More details on the methods and implementation can be found in previous studies on 2D 

macrodispersion [3]. 

3 Results and discussion 

The asymptotic, transverse LAM and longitudinal TAM, macrodispersivities, are evaluated by using the 

following numerical parameters : number of particles Np = 10
4
, number of Monte Carlo simulations NR = 

500, ratio correlation length/spatial step / = 10, LL0 = 16384 and LT1 = LT2 = 256. 

 At low to moderate levels of heterogeneities ( σ Y

2

LAM  

and TAM are compared to those obtained fully analytically by perturbative analysis [11] and half analytically 

by full transport simulations on a first-order approximation of the velocity field [7] [23] (Fig. 1 and 2). The 

numerically obtained macrodispersivities are closer to those of Gelhar et al. [11] in the longitudinal direction 

and to those of Dentz et al. [7] and Schwarze et al. [23] in the transverse direction. At moderate to high 

levels of heterogeneities ( σ Y

2

gnificantly non zero as previously 

demonstrated [15] and strongly increases with σ Y

2

 (Fig.2). More precisely it increases quadratically in σ Y

2

 

for σ Y

2

ne compared to black squares) :  

αTAM≈ αTAM 1 σY
4

 (2) 

The longitudinal macrodispersivity is much larger both to the linear prediction of Gelhar and Axness [11] 

and to the 2D equivalent macrodispersivities (Fig. 1). The strong difference to the full perturbative solution 

is expected as it was already the case in 2D. The large differences between the 2D and the 3D cases show 

that the Euclidean dimension does not only impact the transverse macrodispersivity but also the longitudinal 

one. The 3D longitudinal macrodispersivity is twice larger than the 2D one for σ Y

2

=2.25 and 7 times larger 

for σ Y

2

=7.56. More globally, the 2D and 3D longitudinal macrodispersivities display different dependencies 

with σ Y

2

. In 2D, the longitudinal macrodispersity increases first linearly and then quadratically with σ Y

2

 at 

high heterogeneities [8] (Fig. 1) :  

αLAM 2D ≈ 0.84 σY
2

0.17 σY
4

 (3) 

The coefficient in front of the linear and quadratic terms are only slightly different from those obtained with 

an exponentially correlated permeability field [8]. In 3D, as shown previously, LAM increases rather 

exponentially than quadratically with σ Y

2

 for σ Y

2

2.25 (Fig. 1) :  

αLAF≈ exp σY
2 /1.55  (4) 

While the longitudinal and transverse macrodispersivities display very different types of variations, their rate 

LAM/TAM is less variable between 100 and 200, close to the value of 250 obtained for spherical inclusions at 

σ Y

2

=4 [13]. It remains very high showing that the longitudinal macrosidpersivity is at least 2 orders of 

magnitude larger than the transverse macrosidpersivity.We conclude that the longitudinal macrodispersivity 

increases exponentially with σ Y

2

 at high heterogeneity levels. The increase is much stronger than both the 

linear increase predicted by perturbative analysis and the quadratic increase characteristic of its 2D 

counterpart. The transverse macrodispersivity is significantly positive (non zero) and increases quadratically 

with σ Y

2

. The longitudinal macrodispersivity remains always two orders of magnitude larger than the 

transverse macrodispersivity. The next work is to investigate the influences of the pore scale dispersion and 
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of larger scale permeability heterogeneities on the macrodispersion, always in 3D heterogeneous porous 

media. Cherblanc et al. (2003, 2007) have shown that the macrodispersion increases as the pore scale 

dispersion decreases [5] [6].  
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FIG. 1 – Longitudinal macrodispersivity αLAM  as function of σ Y

2

 (the longitudinal macrodispersivity is 

compared to the values obtained numerically for equivalent 2D systems (blue squares) and to the 

perturbative approximation [Gelhar and Axness, 1983] (red line)).  

 

 

 

 

 

 

 

 

 

 

 

FIG. 2 – Transverse macrodispersivity αTAM  as function of σ Y

2

. 


