149 research outputs found

    Sexually transmitted infection risk exposure among black and minority ethnic youth in northwest London: findings from a study translating a sexually transmitted infection risk-reduction intervention to the UK setting.

    No full text
    OBJECTIVES: Young black women are disproportionately affected by sexually transmitted infections (STI) in the UK, but effective interventions to address this are lacking. The Young Brent Project explored the nature and context of sexual risk-taking in young people to inform the translation of an effective clinic-based STI reduction intervention (Project SAFE) from the USA to the UK. METHODS: One-to-one in-depth interviews (n = 37) and group discussions (n = 10) were conducted among men and women aged 15-27 years from different ethnic backgrounds recruited from youth and genitourinary medicine clinic settings in Brent, London. The interviews explored the context within which STI-related risks were assessed, experienced and avoided, the skills needed to recognise risk and the barriers to behaviour change. RESULTS: Concurrent sexual partnerships, mismatched perceptions and expectations, and barriers to condom use contributed to STI risk exposure and difficulties in implementing risk-reduction strategies. Women attempted to achieve monogamy, but experienced complex and fluid sexual relationships. Low risk awareness, flawed partner risk assessments, negative perceptions of condoms and lack of control hindered condom use. Whereas men made conscious decisions, women experienced persuasion, deceit and difficulty in requesting condom use, particularly with older partners. CONCLUSIONS: Knowledge of STI and condom use skills is not enough to equip young people with the means to reduce STI risk. Interventions with young women need to place greater emphasis on: entering and maintaining healthy relationships; awareness of risks attached to different forms of concurrency and how concurrency arises; skills to redress power imbalances and building self-esteem

    Outcomes from a 12-Week, Open-Label, Multicenter Clinical Trial of Teduglutide in Pediatric Short Bowel Syndrome

    Get PDF
    Objective To determine safety and pharmacodynamics/efficacy of teduglutide in children with intestinal failure associated with short bowel syndrome (SBS-IF). Study design This 12-week, open-label study enrolled patients aged 1-17 years with SBS-IF who required parenteral nutrition (PN) and showed minimal or no advance in enteral nutrition (EN) feeds. Patients enrolled sequentially into 3 teduglutide cohorts (0.0125 mg/kg/d [n = 8], 0.025 mg/kg/d [n = 14], 0.05 mg/kg/d [n = 15]) or received standard of care (SOC, n = 5). Descriptive summary statistics were used. Results All patients experienced ≥1 treatment-emergent adverse event; most were mild or moderate. No serious teduglutide-related treatment-emergent adverse events occurred. Between baseline and week 12, prescribed PN volume and calories (kcal/kg/d) changed by a median of −41% and −45%, respectively, with 0.025 mg/kg/d teduglutide and by −25% and −52% with 0.05 mg/kg/d teduglutide. In contrast, PN volume and calories changed by 0% and −6%, respectively, with 0.0125 mg/kg/d teduglutide and by 0% and −1% with SOC. Per patient diary data, EN volume increased by a median of 22%, 32%, and 40% in the 0.0125, 0.025, and 0.05 mg/kg/d cohorts, respectively, and by 11% with SOC. Four patients achieved independence from PN, 3 in the 0.05 mg/kg/d cohort and 1 in the 0.025 mg/kg/d cohort. Study limitations included its short-term, open-label design, and small sample size. Conclusions Teduglutide was well tolerated in pediatric patients with SBS-IF. Teduglutide 0.025 or 0.05 mg/kg/d was associated with trends toward reductions in PN requirements and advancements in EN feeding in children with SBS-IF

    Anti-emetic drugs in oncology: pharmacology and individualization by pharmacogenetics

    Get PDF
    Objective Nausea and vomiting are the most distressful side effects of cytotoxic drugs in cancer patients. Antiemetics are commonly used to reduce these side effects. However, the current antiemetic efficacy is about 70–80% in patients treated with highly-emetogenic cytotoxic drugs. One of the potential factors explaining this suboptimal response is variability in genes encoding enzymes and proteins which play a role in metabolism, transport and receptors related to antiemetic drugs. Aim of this review was to describe the pharmacology and pharmacogenetic concepts of of antiemetics in oncology. Method Pharmacogenetic and pharmacology studies of antiemetics in oncology published between January 1997 and February 2010 were searched in PubMed. Furthermore, related textbooks were also used for exploring the pharmacology of antiemetic drugs. The antiemetic drugs which were searched were the 5-hydroxytryptamine 3 receptor antagonists (5-HT3RAs), dopamine antagonists, corticosteroids, benzodiazepines, cannabinoids, antihistamines and neurokinin-1 antagonists. Result The 5-HT3RAs are widely used in highly emetogenic chemotherapy in combination with dexamethasone and a neurokinin-1 antagonist, especially in acute phase. However, the dopamine antagonists and benzodiazepines were found more appropriate for use in breakthrough and anticipatory symptoms or in preventing the delayed phase of chemotherapy induced nausea and vomiting. The use of cannabinoids and antihistamines need further investigation. Only six articles on pharmacogenetics of the 5-HT3RAs in highly emetogenic chemotherapy are published. Specifically, these studies investigated the association of the efficacy of 5-HT3RAs and variants in the multi drug resistance 1 (MDR1) gene, 5-HT3A,B and C receptor genes and CYP2D6 gene. The pharmacogenetic studies of the other antiemetics were not found in this review. Conclusion It is concluded that pharmacogenetic studies with antiemetics are sparse. It is too early to implement results of pharmacogenetic association studies of antiemetic drugs in clinical practice: confirmation of early findings is required

    Randomised controlled trial of school-based humanistic counselling for emotional distress in young people: Feasibility study and preliminary indications of efficacy

    Get PDF
    The purpose of this study was to test the feasibility of a randomised controlled trial comparing six weeks of humanistic school-based counselling versus waiting list in the reduction of emotional distress in young people, and to obtain initial indications of efficacy. Following a screening procedure, young people (13 - 15 years old) who experienced emotional distress were randomised to either humanistic counselling or waiting list in this multi-site study. Outcomes were assessed using a range of self-report mental health measures, with the emotional symptoms subscale of the Strengths and Difficulties Questionnaire (SDQ) acting as the primary outcome indicator. Recruitment procedures were successful, with 32 young people consenting to participate in the trial and 27 completing endpoint measures. Trial procedures were acceptable to all involved in the research. No significant differences were found between the counselling and waiting list groups in reductions in levels of emotional symptoms (Hedges' g = 0.03), but clients allocated to counselling showed significantly greater improvement in prosocial behaviour (g = 0.89) with an average effect size (g) across the nine outcome measures of 0.25. Participants with higher levels of depressive symptoms showed significantly greater change. This study suggested that a randomised controlled trial of counselling in schools is acceptable and feasible, although initial indications of efficacy are mixed

    Initial Characterization of the FlgE Hook High Molecular Weight Complex of

    Get PDF
    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility

    Modeling Planarian Regeneration: A Primer for Reverse-Engineering the Worm

    Get PDF
    A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences—using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences

    Absence of N addition facilitates B cell development, but impairs immune responses

    Get PDF
    The programmed, stepwise acquisition of immunocompetence that marks the development of the fetal immune response proceeds during a period when both T cell receptor and immunoglobulin (Ig) repertoires exhibit reduced junctional diversity due to physiologic terminal deoxynucleotidyl transferase (TdT) insufficiency. To test the effect of N addition on humoral responses, we transplanted bone marrow from TdT-deficient (TdT−/−) and wild-type (TdT+/+) BALB/c mice into recombination activation gene 1-deficient BALB/c hosts. Mice transplanted with TdT−/− cells exhibited diminished humoral responses to the T-independent antigens α-1-dextran and (2,4,6-trinitrophenyl) hapten conjugated to AminoEthylCarboxymethyl-FICOLL, to the T-dependent antigens NP19CGG and hen egg lysozyme, and to Enterobacter cloacae, a commensal bacteria that can become an opportunistic pathogen in immature and immunocompromised hosts. An exception to this pattern of reduction was the T-independent anti-phosphorylcholine response to Streptococcus pneumoniae, which is normally dominated by the N-deficient T15 idiotype. Most of the humoral immune responses in the recipients of TdT−/− bone marrow were impaired, yet population of the blood with B and T cells occurred more rapidly. To further test the effect of N-deficiency on B cell and T cell population growth, transplanted TdT-sufficient and -deficient BALB/c IgMa and congenic TdT-sufficient CB17 IgMb bone marrow were placed in competition. TdT−/− cells demonstrated an advantage in populating the bone marrow, the spleen, and the peritoneal cavity. TdT deficiency, which characterizes fetal lymphocytes, thus appears to facilitate filling both central and peripheral lymphoid compartments, but at the cost of altered responses to a broad set of antigens

    Guías de práctica clínica para el tratamiento de la hipertensión arterial 2007

    Full text link
    corecore