1,322 research outputs found

    Uncoupled Hartree-Fock calculations of the polarizability and hyperpolarizabilities of nitrophenols

    Get PDF
    The polarizability and hyperpolarizabilities of nitrophenols as model compounds for studying nonlinear optics have been investigated at the Hartree-Fock level of approximation by means of the Dalgarno Uncoupled Hartree-Fock (DUHF) or Sum Over Orbitals (SOO) method. The additive character and the charge transfer effects in α,β,γ and have been analyzed in terms of the δ and π molecular orbital contributions, the contribution of the individual π molecular orbitals, and the contribution of the highest occupied and the lowest unoccupied\ud molecular orbitals. Within the SOO approach, the reliability of the Two-Level Model has been tested and the influence of the rotation of the nitro group and of the presence of the intramolecular hydrogen bonding in ortho-nitrophenol have been studied. The results show that the present method is a reliable and efficient tool for the prediction of trends in the molecular polarizability and hyperpolarizabilities of large molecule

    COMO White Paper - Why We Still Matter

    Get PDF

    Georgia Library Spotlight - Georgia Northwestern Technical College Libraries

    Get PDF

    A Point-of-Purchase Messaging Program Increases Sales of Identified Healthy Items in a University Food Court

    Get PDF
    The obesity epidemic in the United States is effecting the college population. College populations across the country are served by contract foodservice companies that are looking for strategiesto promote the purchasing of healthy menu items. To determine if sales of identified healthy items increased in a University food court, in this study, the Point-of-Purchase(POP) messaging technique was implemented. The sales data for 2 low-calorie,low-fat menu items was collected for 11-weeks. The 11-week time period was subdivided into a 6-week baseline phase, 4-week intervention phase, and 1-week follow-up phase. During the intervention 4-POP interventions were implemented to represent each week of the intervention phase. Two statistical differences were located using a t-test. Throughout both the intervention phase (P=0.001) and follow-up phase (P=0.05) significantly more sandwiches were sold that during the baseline phase

    Convergence and frequency-domain analysis of a discrete first-order model reference adaptive controller

    Get PDF
    SUMMARY We study the convergence properties of a direct model reference adaptive control system by applying techniques from numerical analysis. In particular, a first-order discrete system coupled to a minimal control synthesis algorithm discretized by the one-step one-stage zero-order-hold sampling is studied. This results in a strongly non-linear dynamic system owing to the adaptive mechanism where stability at steady state, i.e. at the operating point, equates to successful control. This paper focuses on the convergence analysis of the overall dynamical system for understanding accuracy, stability and performance at steadystate. The local stability of the steady state solution is considered by linearizing the system in the neighbourhood of an operating point when the input is a step function. This analysis allows us to specify two gain space domains which define the region of local stability. Moreover, both the accuracy and the frequency-domain analyses give insight into the range of adaptive control weightings that results in optimal performance of the minimal control synthesis algorithm and also highlights a possible approach to a priori selection of the time step and adaptive weighting values. The effectiveness of the proposed analysis is further demonstrated by simulations and experiments on a first-order plant. Copyright # 2006 John Wiley & Sons, Ltd

    Causality in real-time dynamic substructure testing

    Get PDF
    Causality, in the bond graph sense, is shown to provide a conceptual framework for the design of real-time dynamic substructure testing experiments. In particular, known stability problems with split-inertia substructured systems are reinterpreted as causality issues within the new conceptual framework. As an example, causality analysis is used to provide a practical solution to a split-inertia substructuring problem and the solution is experimentally verified

    The analysis of the Generalized-a method for non-linear dynamic problems

    Get PDF
    International audienceThis paper presents the consistency and stability analyses of the Generalized-α methods applied to non-linear dynamical systems. The second-order accuracy of this class of algorithms is proved also in the non-linear regime, independently of the quadrature rule for non-linear internal forces. Conversely, the G-stability notion which is suitable for linear multistep schemes devoted to non-linear dynamic problems cannot be applied, as the non-linear structural dynamics equations are not contractive. Nonetheless, it is proved that the Generalized-α methods are endowed with stability in an energy sense and guarantee energy decay in the high-frequency range as well as asymptotic annihilation. However, overshoot and heavy energy oscillations in the intermediate-frequency range are exhibited. The results of representative numerical simulations performed on relatively simple single- and multiple-degrees-of-freedom non-linear systems are presented in order to confirm the analytical estimates
    corecore